I want to differentiate the following function wrt in MATLAB: T(e(x(t),t)⁄p(t))
My problem is that I know the derivatives of x numerically (I am inside a kind of odefun). I want to use diff to make my code generalizeable for high order derivatives,but the derivatives of x are now constant. I would also like all this to be in an anonymous function where I can make the differentiation and substitute accordingly the time and the derivative of x needed,so that I don't have to write multiple functions for every state of my system.
My code is as follows:
syms q x star;
qd=symfun(90*pi/180+30*pi/180*cos(q),[q]);
p=symfun(79*pi/180*exp(-1.25*q)+pi/180,[q]);
T=log(-(1+star)/star);
e=symfun(x-qd,[x,q]);
and I want to write for example a function in the form
@(t,y)(d^2⁄dt^2 T(e(x(t),t)⁄p(t))+d⁄dt T(e(x(t),t)⁄p(t))+T(e(x(t),t)⁄p(t)))