I'm looking for a javascript function that can:
Condition (I)
compose another function when it does not have recursion in its definition, kind of like in maths when the function is given a power, but with multiple arguments possible in the first input - e.g. with a (math) function f:
f(x) := x+2
f5(x) = f(f(f(f(f(x))))) = x+10
Condition (II)
Or maybe even input custom arguments into each step of composition:
(52)2)2=
Math.pow(Math.pow(Math.pow(5,2),2),2) = Math.pow.pow([5,2],2,["r",2]])
//first arg set, how times the next, 2nd arg set - "r" stands for recursion -
//that argument will be occupied by the same function
//Using new solution:
_.supercompose(Math.pow,[[5,2],[_,2],[_,2]]) //-> 390625
2((52)3)=
Math.pow(2,Math.pow(Math.pow(5,2),3)) = Math.pow.pow([5,2],["r",2],["r",3],[2,"r"])
//Using new solution:
_.supercompose(Math.pow,[[5,2],[_,2],[_,3]]) //-> 244140625
_.supercompose(Math.pow,[[5,2],[_,2],[_,3],[2,_]]) //-> Infinity (bigger than the max. number)
Note: The above are just templates, the resulting function doesn't have to have the exact arguments, but the more close to this (or creative, for example, a possibility of branching off like this ->[2,4,"r",4,2,"r"], which would also be complicated) the better.
I've been attempting to do at least (I) with Function.prototype
, I came up with this:
Object.defineProperty(Function.prototype,"pow",{writable:true});
//Just so the function not enumerable using a for-in loop (my habit)
function forceSlice(context,argsArr)
{returnArray.prototype.slice.apply(context,argsArr)}
Function.prototype.pow = function(power)
{
var args=power<2?forceSlice(arguments,[1]):
[this.pow.apply(this,[power-1].concat(forceSlice(arguments,[1])))];
return this.apply(0,args);
}
//Usage:
function square(a){return a*a;}
square.pow(4,2) //65536
function addThree(a,b){return a+(b||3); }
// gives a+b when b exists and isn't 0, else gives a+3
addThree.pow(3,5,4) //15 (((5+4)+3)+3)
Worst case, I might just go with eval
, which I haven't figured out yet too. :/
Edit: Underscore.js, when played around with a bit, can fulfill both conditions. I came up with this, which is close to done, but I can't get it to work:
_.partialApply = function(func,argList){_.partial.apply(_,[func].concat(argList))}
_.supercompose = function(func,instructions)
{
_.reduce(_.rest(instructions),function(memo,value)
{
return _.partialApply(_.partialApply(func, value),memo)();
},_.first(instructions))
}
//Usage:
_.supercompose(Math.pow,[[3,2],[_,2]]) //should be 81, instead throws "undefined is not a function"
Edit: jluckin's cleareance of terms (recursion-> function composition) Edit: made example function return number instead of array