I wish to implement a simple split-apply-combine
routine in Rcpp
where a dataset (matrix) is split up into groups, and then the groupwise column sums are returned. This is a procedure easily implemented in R
, but often takes quite some time. I have managed to implement an Rcpp
solution that beats the performance of R
, but I wonder if I can further improve upon it. To illustrate, here some code, first for the use of R
:
n <- 50000
k <- 50
set.seed(42)
X <- matrix(rnorm(n*k), nrow=n)
g=rep(1:8,length.out=n )
use.for <- function(mat, ind){
sums <- matrix(NA, nrow=length(unique(ind)), ncol=ncol(mat))
for(i in seq_along(unique(ind))){
sums[i,] <- colSums(mat[ind==i,])
}
return(sums)
}
use.apply <- function(mat, ind){
apply(mat,2, function(x) tapply(x, ind, sum))
}
use.dt <- function(mat, ind){ # based on Roland's answer
dt <- as.data.table(mat)
dt[, cvar := ind]
dt2 <- dt[,lapply(.SD, sum), by=cvar]
as.matrix(dt2[,cvar:=NULL])
}
It turns out that the for
-loops is actually quite fast and is the easiest (for me) to implement with Rcpp
. It works by creating a submatrix for each group and then calling colSums
on the matrix. This is implemented using RcppArmadillo
:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
// [[Rcpp::export]]
arma::mat use_arma(arma::mat X, arma::colvec G){
arma::colvec gr = arma::unique(G);
int gr_n = gr.n_rows;
int ncol = X.n_cols;
arma::mat out = zeros(gr_n, ncol);
for(int g=0; g<gr_n; g++){
int g_id = gr(g);
arma::uvec subvec = find(G==g_id);
arma::mat submat = X.rows(subvec);
arma::rowvec res = sum(submat,0);
out.row(g) = res;
}
return out;
}
However, based on answers to this question, I learned that creating copies is expensive in C++
(just as in R
), but that loops are not as bad as they are in R
. Since the arma
-solution relies on creating matrixes (submat
in the code) for each group, my guess is that avoiding this will speed up the process even further. Hence, here a second implementation based on Rcpp
only using a loop:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericMatrix use_Rcpp(NumericMatrix X, IntegerVector G){
IntegerVector gr = unique(G);
std::sort(gr.begin(), gr.end());
int gr_n = gr.size();
int nrow = X.nrow(), ncol = X.ncol();
NumericMatrix out(gr_n, ncol);
for(int g=0; g<gr_n; g++){
int g_id = gr(g);
for (int j = 0; j < ncol; j++) {
double total = 0;
for (int i = 0; i < nrow; i++) {
if (G(i) != g_id) continue; // not sure how else to do this
total += X(i, j);
}
out(g,j) = total;
}
}
return out;
}
Benchmarking these solutions, including the use_dt
version provided by @Roland (my previous version discriminted unfairly against data.table
), as well as the dplyr
-solution suggested by @beginneR, yields the following:
library(rbenchmark)
benchmark(use.for(X,g), use.apply(X,g), use.dt(X,g), use.dplyr(X,g), use_arma(X,g), use_Rcpp(X,g),
+ columns = c("test", "replications", "elapsed", "relative"), order = "relative", replications = 1000)
test replications elapsed relative
# 5 use_arma(X, g) 1000 29.65 1.000
# 4 use.dplyr(X, g) 1000 42.05 1.418
# 3 use.dt(X, g) 1000 56.94 1.920
# 1 use.for(X, g) 1000 60.97 2.056
# 6 use_Rcpp(X, g) 1000 113.96 3.844
# 2 use.apply(X, g) 1000 301.14 10.156
My intution (use_Rcpp
better than use_arma
) did not turn out right. Having said that, I guess that the line if (G(i) != g_id) continue;
in my use_Rcpp
function slows down everything. I am happy to learn about alternatives to set this up.
I am happy that I have achieved the same task in half the time it takes R
to do it, but maybe the several Rcpp is much faster than R
-examples have messed with my expectations, and I am wondering if I can speed this up even more. Does anyone have an idea? I also welcome any programming / coding comments in general since I am relatively new to Rcpp
and C++
.