I have found a solution, which has three parts:
- Have the
if idx == id(self.X):
line. This will make sure samples are filtered only on the training set.
- Override
fit_transform
to make sure the transform method gets y
and not None
- Override the
Pipeline
to allow tranform
to return said y
.
Here's a sample code demonstrating it, I guess it might not cover all the tiny details but I think it solved the major issue which is with the API.
from sklearn.base import BaseEstimator
from mne.decoding.mixin import TransformerMixin
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import GaussianNB
from sklearn import cross_validation
from sklearn.grid_search import GridSearchCV
from sklearn.externals import six
class SampleAndFeatureFilter(BaseEstimator, TransformerMixin):
def __init__(self, perc = None):
self.perc = perc
def fit(self, X, y=None):
self.X = X
sum_per_feature = X.sum(0)
sum_per_sample = X.sum(1)
self.featurefilter = sum_per_feature >= np.percentile(sum_per_feature, self.perc)
self.samplefilter = sum_per_sample >= np.percentile(sum_per_sample, self.perc)
return self
def transform(self, X, y=None, copy=None):
idx = id(X)
X=X[:,self.featurefilter]
if idx == id(self.X):
X = X[self.samplefilter, :]
if y is not None:
y = y[self.samplefilter]
return X, y
return X
def fit_transform(self, X, y=None, **fit_params):
if y is None:
return self.fit(X, **fit_params).transform(X)
else:
return self.fit(X, y, **fit_params).transform(X,y)
class PipelineWithSampleFiltering(Pipeline):
def fit_transform(self, X, y=None, **fit_params):
Xt, yt, fit_params = self._pre_transform(X, y, **fit_params)
if hasattr(self.steps[-1][-1], 'fit_transform'):
return self.steps[-1][-1].fit_transform(Xt, yt, **fit_params)
else:
return self.steps[-1][-1].fit(Xt, yt, **fit_params).transform(Xt)
def fit(self, X, y=None, **fit_params):
Xt, yt, fit_params = self._pre_transform(X, y, **fit_params)
self.steps[-1][-1].fit(Xt, yt, **fit_params)
return self
def _pre_transform(self, X, y=None, **fit_params):
fit_params_steps = dict((step, {}) for step, _ in self.steps)
for pname, pval in six.iteritems(fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
Xt = X
yt = y
for name, transform in self.steps[:-1]:
if hasattr(transform, "fit_transform"):
res = transform.fit_transform(Xt, yt, **fit_params_steps[name])
if len(res) == 2:
Xt, yt = res
else:
Xt = res
else:
Xt = transform.fit(Xt, y, **fit_params_steps[name]) \
.transform(Xt)
return Xt, yt, fit_params_steps[self.steps[-1][0]]
if __name__ == '__main__':
X = np.random.random((100,30))
y = np.random.random_integers(0, 1, 100)
pipe = PipelineWithSampleFiltering([('flt', SampleAndFeatureFilter()), ('cls', GaussianNB())])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.3, random_state = 42)
kfold = cross_validation.KFold(len(y_train), 10)
clf = GridSearchCV(pipe, cv = kfold, param_grid = {'flt__perc':[10,20,30,40,50,60,70,80]}, n_jobs = 1)
clf.fit(X_train, y_train)