I'm doing what amounts to a glorified mail merge and then file conversion to PDF... Based on .Net 4.5 I see a couple ways I can do the threading. The one using a thread safe queue seems interesting (Plan A), but I can see a potential problem. What do you think? I'll try to keep it short, but put in what is needed.
This works on the assumption that it will take far more time to do the database processing than the PDF conversion.
In both cases, the database processing for each file is done in its own thread/task, but PDF conversion could be done in many single threads/tasks (Plan B) or it can be done in a single long running thread (Plan A). It is that PDF conversion I am wondering about. It is all in a try/catch statement, but that thread must not fail or all fails (Plan A). Do you think that is a good idea? Any suggestions would be appreciated.
/* A class to process a file: */
public class c_FileToConvert
{
public string InFileName { get; set; }
public int FileProcessingState { get; set; }
public string ErrorMessage { get; set; }
public List<string> listData = null;
c_FileToConvert(string inFileName)
{
InFileName = inFileName;
FileProcessingState = 0;
ErrorMessage = ""; // yah, yah, yah - String.Empty
listData = new List<string>();
}
public void doDbProcessing()
{
// get the data from database and put strings in this.listData
DAL.getDataForFile(this.InFileName, this.ErrorMessage); // static function
if(this.ErrorMessage != "")
this.FileProcessingState = -1; //fatal error
else // Open file and append strings to it
{
foreach(string s in this.listData}
...
FileProcessingState = 1; // enum DB_WORK_COMPLETE ...
}
}
public void doPDFProcessing()
{
PDFConverter cPDFConverter = new PDFConverter();
cPDFConverter.convertToPDF(InFileName, InFileName + ".PDF");
FileProcessingState = 2; // enum PDF_WORK_COMPLETE ...
}
}
/*** These only for Plan A ***/
public ConcurrentQueue<c_FileToConvert> ConncurrentQueueFiles = new ConcurrentQueue<c_FileToConvert>();
public bool bProcessPDFs;
public void doProcessing() // This is the main thread of the Windows Service
{
List<c_FileToConvert> listcFileToConvert = new List<c_FileToConvert>();
/*** Only for Plan A ***/
bProcessPDFs = true;
Task task1 = new Task(new Action(startProcessingPDFs)); // Start it and forget it
task1.Start();
while(1 == 1)
{
List<string> listFileNamesToProcess = new List<string>();
DAL.getFileNamesToProcessFromDb(listFileNamesToProcess);
foreach(string s in listFileNamesToProcess)
{
c_FileToConvert cFileToConvert = new c_FileToConvert(s);
listcFileToConvert.Add(cFileToConvert);
}
foreach(c_FileToConvert c in listcFileToConvert)
if(c.FileProcessingState == 0)
Thread t = new Thread(new ParameterizedThreadStart(c.doDbProcessing));
/** This is Plan A - throw it on single long running PDF processing thread **/
foreach(c_FileToConvert c in listcFileToConvert)
if(c.FileProcessingState == 1)
ConncurrentQueueFiles.Enqueue(c);
/*** This is Plan B - traditional thread for each file conversion ***/
foreach(c_FileToConvert c in listcFileToConvert)
if(c.FileProcessingState == 1)
Thread t = new Thread(new ParameterizedThreadStart(c.doPDFProcessing));
int iCount = 0;
for(int iCount = 0; iCount < c_FileToConvert.Count; iCount++;)
{
if((c.FileProcessingState == -1) || (c.FileProcessingState == 2))
{
DAL.updateProcessingState(c.FileProcessingState)
listcFileToConvert.RemoveAt(iCount);
}
}
sleep(1000);
}
}
public void startProcessingPDFs() /*** Only for Plan A ***/
{
while (bProcessPDFs == true)
{
if (ConncurrentQueueFiles.IsEmpty == false)
{
try
{
c_FileToConvert cFileToConvert = null;
if (ConncurrentQueueFiles.TryDequeue(out cFileToConvert) == true)
cFileToConvert.doPDFProcessing();
}
catch(Exception e)
{
cFileToConvert.FileProcessingState = -1;
cFileToConvert.ErrorMessage = e.message;
}
}
}
}
Plan A seems like a nice solution, but what if the Task fails somehow? Yes, the PDF conversion can be done with individual threads, but I want to reserve them for the database processing.
This was written in a text editor as the simplest code I could, so there may be something, but I think I got the idea across.