I have a MIP which I know the solution almost for certain. I want to use gurobi to prove that the true solution (even if it is not the one I provide) shall not lie more than 0.5% deviated from the solution I gave. I believe that simply keeping the cutting without branching would possibly save much more time. Do you know a way that I could simply do cutting without branching in gurobi? Here's the code performance:
Changed value of parameter LogFile to Prev: gurobi.log Default: Changed value of parameter MIPFocus to 3 Prev: 0 Min: 0 Max: 3 Default: 0 Changed value of parameter Cuts to 3 Prev: -1 Min: -1 Max: 3 Default: -1 Optimize a model with 1794 rows, 673 columns and 4180 nonzeros Found heuristic solution: objective -22.8549 Presolve removed 18 rows and 17 columns Presolve time: 0.01s Presolved: 1776 rows, 656 columns, 4464 nonzeros
Loaded MIP start with objective -342.641
Variable types: 592 continuous, 64 integer (64 binary) Presolved: 1776 rows, 656 columns, 4464 nonzeros
Root relaxation: objective -6.775689e+02, 682 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 -677.56892 0 64 -342.64109 -677.56892 97.7% - 0s
0 0 -666.45290 0 72 -342.64109 -666.45290 94.5% - 0s
0 0 -658.68050 0 72 -342.64109 -658.68050 92.2% - 1s
0 0 -540.92023 0 72 -342.64109 -540.92023 57.9% - 3s
0 0 -503.36031 0 72 -342.64109 -503.36031 46.9% - 4s
0 0 -485.13025 0 72 -342.64109 -485.13025 41.6% - 6s
0 0 -472.73790 0 72 -342.64109 -472.73790 38.0% - 8s
0 0 -461.23185 0 72 -342.64109 -461.23185 34.6% - 9s
0 0 -453.99476 0 72 -342.64109 -453.99476 32.5% - 10s
0 0 -452.23014 0 72 -342.64109 -452.23014 32.0% - 10s
0 3 -452.23014 0 72 -342.64109 -452.23014 32.0% - 11s
642 586 -397.07656 12 54 -342.64109 -429.76289 25.4% 120 15s
1425 1290 -397.34606 11 60 -342.64109 -422.53417 23.3% 114 20s
1716 1553 -382.83438 18 72 -342.64109 -420.42709 22.7% 111 25s
1727 1560 -376.17473 16 72 -342.64109 -420.42709 22.7% 110 30s
1733 1564 -410.28764 10 72 -342.64109 -420.42709 22.7% 110 35s
1744 1571 -382.83438 18 72 -342.64109 -420.42709 22.7% 109 40s
1750 1577 -412.59771 12 69 -342.64109 -416.84728 21.7% 113 45s
1817 1602 -380.32997 19 60 -342.64109 -404.73090 18.1% 120 50s
2618 2045 -375.99924 18 62 -342.64109 -391.32863 14.2% 126 55s
3159 2315 -369.40052 22 59 -342.64109 -386.33088 12.8% 127 60s
3808 2595 -362.27693 20 60 -342.64109 -382.29310 11.6% 127 65s
4503 2903 -350.90325 24 54 -342.64109 -379.52932 10.8% 126 71s
4895 3078 -349.90847 23 55 -342.64109 -378.33598 10.4% 126 78s
5339 3242 -363.26836 21 59 -342.64109 -376.77299 10.0% 126 80s
....