python Matplotlib's "specgram" display of a heatmap showing frequency (y-axis) vs. time (x-axis) is useful for time series analysis, but I would like to have the y-axis displayed in terms of Period (= 1/frequency), rather than frequency. I am still asking if anyone has a complete working solution to achieve this?
The immediately following python code generates the author's original plot using "specgram" and (currently commented out) a comparison with the suggested solution that was offered using "mlab.specgram". This suggested solution succeeds with the easy conversion from frequency to period = 1/frequency, but does not generate a viable plot for the authors example.
from __future__ import division
from datetime import datetime
import numpy as np
from pandas import DataFrame, Series
import pandas.io.data as web
import pandas as pd
from pylab import plot,show,subplot,specgram
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
################################################
# obtain data:
ticker = "SPY"
source = "google"
start_date = datetime(1999,1,1)
end_date = datetime(2012,1,1)
qt = web.DataReader(ticker, source, start_date, end_date)
qtC = qt.Close
################################################
data = qtC
fs = 1 # 1 sample / day
nfft = 128
# display the time-series data
fig = plt.figure()
ax1 = fig.add_subplot(311)
ax1.plot(range(len(data)),data)
#----------------
# Original version
##################
# specgram (NOT mlab.specgram) --> gives direct plot, but in Frequency space (want plot in Period, not freq).
ax2 = fig.add_subplot(212)
spec, freq, t = specgram(data, NFFT=nfft, Fs=fs, noverlap=0)
#----------------
"""
# StackOverflow version (with minor changes to axis titles)
########################
# calcuate the spectrogram
spec, freq, t = mlab.specgram(data, NFFT=nfft, Fs=fs, noverlap=0)
# calculate the bin limits in time (x dir)
# note that there are n+1 fence posts
dt = t[1] - t[0]
t_edge = np.empty(len(t) + 1)
t_edge[:-1] = t - dt / 2.
# however, due to the way the spectrogram is calculates, the first and last bins
# a bit different:
t_edge[0] = 0
t_edge[-1] = t_edge[0] + len(data) / fs
# calculate the frequency bin limits:
df = freq[1] - freq[0]
freq_edge = np.empty(len(freq) + 1)
freq_edge[:-1] = freq - df / 2.
freq_edge[-1] = freq_edge[-2] + df
# calculate the period bin limits, omit the zero frequency bin
p_edge = 1. / freq_edge[1:]
# we'll plot both
ax2 = fig.add_subplot(312)
ax2.pcolormesh(t_edge, freq_edge, spec)
ax2.set_ylim(0, fs/2)
ax2.set_ylabel('freq.[day^-1]')
ax3 = fig.add_subplot(313)
# note that the period has to be inverted both in the vector and the spectrum,
# as pcolormesh wants to have a positive difference between samples
ax3.pcolormesh(t_edge, p_edge[::-1], spec[:0:-1])
#ax3.set_ylim(0, 100/fs)
ax3.set_ylim(0, nfft)
ax3.set_xlabel('t [days]')
ax3.set_ylabel('period [days]')
"""