When I try to calculate the 75th percentile in MATLAB, I get a different value than I do in NumPy.
MATLAB:
>> x = [ 11.308 ; 7.2896; 7.548 ; 11.325 ; 5.7822; 9.6343;
7.7117; 7.3341; 10.398 ; 6.9675; 10.607 ; 13.125 ;
7.819 ; 8.649 ; 8.3106; 12.129 ; 12.406 ; 10.935 ;
12.544 ; 8.177 ]
>> prctile(x, 75)
ans =
11.3165
Python + NumPy:
>>> import numpy as np
>>> x = np.array([ 11.308 , 7.2896, 7.548 , 11.325 , 5.7822, 9.6343,
7.7117, 7.3341, 10.398 , 6.9675, 10.607 , 13.125 ,
7.819 , 8.649 , 8.3106, 12.129 , 12.406 , 10.935 ,
12.544 , 8.177 ])
>>> np.percentile(x, 75)
11.312249999999999
I've checked the answer with R too, and I'm getting NumPy's answer.
R:
> x <- c(11.308 , 7.2896, 7.548 , 11.325 , 5.7822, 9.6343,
+ 7.7117, 7.3341, 10.398 , 6.9675, 10.607 , 13.125 ,
+ 7.819 , 8.649 , 8.3106, 12.129 , 12.406 , 10.935 ,
+ 12.544 , 8.177)
> quantile(x, 0.75)
75%
11.31225
What is going on here? And is there any way to make Python & R's behavior mirror MATLAB's?