I am trying to group my data by Year and CountyID then use splinefun (cubic spline interpolation) on the subset data. I am open to ideas, however the splinefun is a must and cannot be changed.
Here is the code I am trying to use:
age <- seq(from = 0, by = 5, length.out = 18)
TOT_POP <- df %.%
group_by(unique(df$Year), unique(df$CountyID) %.%
splinefun(age, c(0, cumsum(df$TOT_POP)), method = "hyman")
Here is a sample of my data Year = 2010 : 2013, Agegrp = 1 : 17 and CountyIDs are equal to all counties in the US.
CountyID Year Agegrp TOT_POP
1001 2010 1 3586
1001 2010 2 3952
1001 2010 3 4282
1001 2010 4 4136
1001 2010 5 3154
What I am doing is taking the Agegrp 1 : 17 and splitting the grouping into individual years 0 - 84. Right now each group is a representation of 5 years. The splinefun allows me to do this while providing a level of mathematical rigour to the process i.e., splinefun allows me provide a population total per each year of age, in each individual county in the US.
Lastly, the splinefun code by itself does work but within the group_by function it does not, it produces:
Error: wrong result size(4), expected 68 or 1.
The splinefun code the way I am using it works like this
TOT_POP <- splinefun(age, c(0, cumsum(df$TOT_POP)),
method = "hyman")
TOT_POP = pmax(0, diff(TOT_POP(c(0:85))))
Which was tested on one CountyID during one Year. I need to iterate this process over "x" amount of years and roughly 3200 counties.