As the other answer demonstrates, both of the combinations S -> ((E->A, E), S)
and (E->S->(A, S), E)
have Monad and Comonad instances simultaneously. In fact giving a Monad/Comonad instance is
equivalent to giving a
monoid structure to resp. its points ∀r.r->f(r) or its copoints ∀r.f(r)->r, at least in classical,
non-constructive sense (I don't know the constructive answer). This fact suggests that actually a
Functor f has a very good chance that it can
be both Monad and Comonad, provided its points and copoints are non-trivial.
The real question, however, is whether the Monad/Comonad instances constructed as such do have natural
computational/categorical meanings. In this particular case I would say "no", because you don't seem to have
a priori knowledge about how to compose them in a way that suit your computational needs.
The standard categorical way to compose two (co)monads is via adjunctions. Let me summarize your situation:
Fₑ Fₛ
--> -->
Hask ⊣ Hask ⊣ Hask
<-- <--
Gₑ Gₛ
Fₜ(a) = (a,t)
Gₜ(a) = (t->a)
Proof of Fₜ ⊣ Gₜ:
Fₜ(x) -> y ≃
(x,t) -> y ≃
x -> (t->y) ≃
x -> Gₜ(y)
Now you can see that the state monad (s->(a,s)) ≃ (s->a,s->s) is the composition GₛFₛ and the costate comonad
is FₑGₑ. This adjunction says that Hask can be interpreted as a model of the (co)state (co)algebras.
Now, 'adjunctions compose.' For example,
FₛFₑ(x) -> y ≃
Fₑ(x) -> Gₛ(y) ≃
x -> GₑGₛ(y)
So FₛFₑ ⊣ GₑGₛ. This gives a pair of a monad and a comonad, namely
T(a) = GₑGₛFₛFₑ(a)
= GₑGₛFₛ(a,e)
= GₑGₛ(a,e,s)
= Gₑ(s->(a,e,s))
= e->s->(a,e,s)
= ((e,s)->a, (e,s)->(e,s))
G(a) = FₛFₑGₑGₛ(a)
= FₛFₑGₑ(s->a)
= FₛFₑ(e->s->a)
= Fₛ(e->s->a,e)
= (e->s->a,e,s)
= ((e,s)->a, (e,s))
T is simply the state monad with the state (e,s), G is the costate comonad with the costate (e,s), so
these do have very natural meanings.
Composing adjunctions is a natural, frequent mathematical operation. For example, a geometric morphism
between topoi (kind of Cartesian Closed Categories which admit complex (non-free) constructions at the 'type level') is defined as a pair of adjunctions, only requiring its left adjoint to be left exact (i.e. preserves finite limits). If those topoi are sheaves on topological spaces,
composing the adjunctions simply corresponds to composing (unique) continuous base change maps (in the opposite direction), having a very natural meaning.
On the other hand, composing monads/comonads directly seems to be a very rare practice in Mathematics.
This is because often a (co)monad is thought of as a carrier of an (co)algebraic theory, rather than as a
model. In this interpretation the corresponding adjunctions are the models, not the monad. The problem
is that composing two theories requires another theory, a theory about how to compose them. For example,
imagine composing two theories of monoids. Then you may get at least two new theories,
namely the theory of lists of lists, or ring-like algebras where two kinds of binary operations distribute.
Neither is a priori better/more natural than the other. This is the meaning of "monads don't compose"; it doesn't say the composition cannot be a monad, but it does say you will need another theory how to compose them.
In contrast, composing adjunctions naturally results in another adjunction simply because by doing so you are
implicity specifying the rules of composing two given theories. So by taking the monad of the composed adjunction you get the theory that also specifies the rules of composition.