I'm trying to implement with Haskell an algorithm to manipulate mathematical expressions. I have this data type :
data Exp = Var String | IVal Int | Add Exp Exp
This will be enough for my question.
Given a set of expression transformations, for example :
(Add a b) => (Add b a)
(Add (Add a b) c) => (Add a (Add b c))
And an expression, for example : x = (Add (Add x y) (Add z t)), I want to find all expressions in the neighborhood of x. Given that neighborhood of x is defined as: y in Neighborhood(x) if y can be reached from x within a single transformation.
I am new to Haskell. I am not even sure Haskell is the right tool for this job.
The final goal is to get a function : equivalent x which returns a set of all expressions that are equivalent to x. In other words, the set of all expressions that are in the closure of the neighborhood of x (given a set of transformations).
Right now, I have the following :
import Data.List(nub)
import Data.Set
data Exp = IVal Int
| Scalar String
| Add Exp Exp
deriving (Show, Eq, Ord)
commu (Add a b) = (Add b a)
commu x = x
assoc (Add (Add a b) c) = (Add a (Add b c))
assoc (Add a (Add b c)) = (Add (Add a b) c)
assoc x = x
neighbors x = [commu x, assoc x]
equiv :: [Exp] -> [Exp]
equiv closure
| closure == closureUntilNow = closure
| otherwise = equiv closureUntilNow
where closureUntilNow = nub $ closure ++ concat [neighbors x|x<-closure]
But It's probably slower than needed (nub is O(n^2)) and some terms are missing.
For example, if you have f = (x+y)+z, then, you will not get (x+z)+y, and some others.