I know python and C++ but have very little experience with R. I'm supposed to figure out what my old coworker's script does - he hasn't been here for several years but I have his files. He has about 10 python files that pass data into a temp file and then into the next python script, which I'm able to track, but he has one R script that I don't understand because I don't know R.
The input to the R script is temp4.txt:
1.414442 0.0043
1.526109 0.0042
1.600553 0.0046
1.637775 0.0045
...etc
Where column 1 is the x-axis of a growth curve (time units) and column 2 is growth level (units OD600, which is a measure of cell density).
The R script is only 4 lines:
inp1 <- scan('/temp4.txt', list(0,0))
decay <- data.frame(t = inp1[[1]], amp = inp1[[2]])
form <- nls(amp ~ const*(exp(fact*t)), data=decay, start = list(const = 0.01, fact = 0.5))
summary(form)
The R script's output:
Parameters:
Estimate Std. Error t value Pr(>|t|)
const 2.293e-03 9.658e-05 23.74 <2e-16 ***
fact 7.106e-01 8.757e-03 81.14 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.002776 on 104 degrees of freedom
Correlation of Parameter Estimates:
const
fact -0.9905
Where the "fact" number is what he's pulling out in the next python script as the value to continue forward with analysis. Usually it's a positive value e.g. "6.649e-01 6.784e-01 6.936e-01 6.578e-01 6.949e-01 6.546e-01 0.6623768 0.6710339 6.952e-01 6.711e-01 6.721e-01 6.520e-01" but because temp file gets overwritten each time I only have one version of it with the negative value -0.9905 which he's throwing away negative values in the next python script.
I need to know what exactly he's doing to recreate it... I know the <- is passing data into an object, so it's the nls() function that's confusing me...
Thanks anyone who can explain the R for me.