I have an RDD as such: byUserHour: org.apache.spark.rdd.RDD[(String, String, Int)]
I would like to create a sparse matrix of the data for calculations like median, mean, etc. The RDD contains the row_id, column_id and value. I have two Arrays containing the row_id and column_id strings for lookup.
Here is my attempt:
import breeze.linalg._
val builder = new CSCMatrix.Builder[Int](rows=BCnUsers.value.toInt,cols=broadcastTimes.value.size)
byUserHour.foreach{x =>
val row = userids.indexOf(x._1)
val col = broadcastTimes.value.indexOf(x._2)
builder.add(row,col,x._3)}
builder.result()
Here is my error:
14/06/10 16:39:34 INFO DAGScheduler: Failed to run foreach at <console>:38
org.apache.spark.SparkException: Job aborted due to stage failure: Task not serializable: java.io.NotSerializableException: breeze.linalg.CSCMatrix$Builder$mcI$sp
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1033)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:770)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:713)
at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1176)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
My dataset is quite large so I would like to do this distributed if possible. Any help would be appreciated.
Progress update:
CSCMartix is not meant to work in Spark. However, there is RowMatrix which extends DistributedMatrix
. RowMatrix
does have a method, computeColumnSummaryStatistics()
, that should compute some of the stats I am looking for. I know MLlib is growing everyday so I will watch for updates, but in the meantime I will try to make an RDD[Vector]
to feed RowMatrix
. Noting that RowMatrix
is experimental and represents a row-oriented distributed Matrix with no meaningful row indices.