There's a paper by Barlow+04 https://arxiv.org/abs/physics/0406120 on finding the mean of variables with asymmetric error bars. You could perhaps use these techniques.
The brute force route that I take is to draw many realisations of the variable from a split-normal distribution (https://en.wikipedia.org/wiki/Split_normal_distribution) and store the best-fitting polynomial parameters for them. I then compute the median and 1-sigma upper/lower error bars (from the 84th and 16th percentile from the median, respectively) for each polynomial parameter.
The code below, in Python 2.7.9, does this. There's a function for computing a split-normal value, the errors from the percentiles and fitting a polynomial.
Hope this helps.
#! /bin/python
from random import choice, gauss
from numpy import polyfit
def split_normal(mus, sigmas_u68, sigmas_l68):
"""
RET: A split-normal value.
"""
split_normal = []
for mu, sigma_u68, sigma_l68 in zip(mus, sigmas_u68, sigmas_l68):
sigma = choice([sigma_u68, -sigma_l68])
g = abs(gauss(0.0, 1.0)) * sigma + mu
split_normal.append(g)
return split_normal
def errors_84_16(x):
"""
RET: 1-sigma upper/lower error bars from the 84/16th percentile
from the median.
"""
n = len(x)
index_med = n / 2 # median.
index_84 = int(round(n * 0.84135)) # 84th percentile from median.
index_16 = int(round(n * 0.15865))
x_sorted = sorted(x)
x_med = x_sorted[index_med]
x_u68 = x_sorted[index_84] - x_med # 1-sigma upper error.
x_l68 = x_med - x_sorted[index_16] # 1-sigma lower error.
return x_med, x_u68, x_l68
def assymetric_polyfit(x, y, y_u68, y_l68, n_mc=500):
"""
DES: Solves y = a + b * x for assymentric y error bars.
RET: [a, a_u68, a_l68, b, b_u68, b_l68].
"""
a_mc = []
b_mc = []
for i in xrange(0, n_mc):
y_mc = split_normal(y, y_u68, y_l68)
pars = polyfit(x, y_mc, 2)
a_mc.append(pars[2])
b_mc.append(pars[1])
a, a_u68, a_l68 = errors_84_16(a_mc)
b, b_u68, b_l68 = errors_84_16(b_mc)
return a, a_u68, a_l68, b, b_u68, b_l68
def example():
"""
"""
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [5.0, 8.0, 11.0, 14.0, 17.0] # 2 + 3x
y_u68 = [0.5, 0.5, 0.5, 0.5, 0.5]
y_l68 = [1.5, 1.5, 1.5, 1.5, 1.5]
pars = assymetric_polyfit(x, y, y_u68, y_l68)
print(pars)
if __name__ == '__main__':
example()