I would like to run the dependent variable of a logistic regression (in my data set it's : dat$admit) with all available variables, pairs and trios(3 Independent vars), each regression with a different Independent variables vs dependent variable. The outcome that I would like to get back is a list of each regression summary in a row: coeff,p-value ,AUC,CI 95%. Using the data set submitted below there should be 7 regressions:
dat$admit vs dat$female
dat$admit vs dat$apcalc
dat$admit vs dat$num
dat$admit vs dat$female + dat$apcalc
dat$admit vs dat$female + dat$num
dat$admit vs dat$apcalc + dat$num
dat$admit vs dat$female + dat$apcalc + dat$num
Here is a sample data set (where dat$admit is the logistic regression dependent variable) :
dat <- read.table(text = " female apcalc admit num
0 0 0 7
0 0 1 1
0 1 0 3
0 1 1 7
1 0 0 5
1 0 1 1
1 1 0 0
1 1 1 6",header = TRUE)
Per @marek comment, the output should be like this (for female alone and from female & apcalc ): # Intercept Estimate P-Value (Intercept) P-Value (Estimate) AUC # female 0.000000e+00 0.000000e+00 1 1 0.5
female+apcalc 0.000000e+00 0.000000e+00 1 1 0.5
There is a good code that @David Arenburg wrote that produces the stats but with no models creations of pairs and trios so I would like to know how can add the models creations. Here is David Arenburg's code?
library(caTools)
ResFunc <- function(x) {
temp <- glm(reformulate(x,response="admit"), data=dat,family=binomial)
c(summary(temp)$coefficients[,1],
summary(temp)$coefficients[,4],
colAUC(predict(temp, type = "response"), dat$admit))
}
temp <- as.data.frame(t(sapply(setdiff(names(dat),"admit"), ResFunc)))
colnames(temp) <- c("Intercept", "Estimate", "P-Value (Intercept)", "P-Value (Estimate)", "AUC")
temp
# Intercept Estimate P-Value (Intercept) P-Value (Estimate) AUC
# female 0.000000e+00 0.000000e+00 1 1 0.5
# apcalc 0.000000e+00 0.000000e+00 1 1 0.5
# num 5.177403e-16 -1.171295e-16 1 1 0.5
Any idea how to create this list? Thanks, Ron