0

I've written a simple cython wrapper for donlp2, a C optimization library. The library uses global variables extensively and assumes the caller has written functions with pre-defined names so the function can call them. (e.g., there is a function ef and egradf that evaluate the function and its gradient, respectively)

The wrapper was pretty simple to write using "cdef extern" for the global variables and "cdef public" to create the functions the C library expected. I also used view.array to cast double* pointers to cython arrays that could be passed to python functions. Doing that my wrapper is able to use the C library to optimize functions & gradients defined in pure python.

Below is the wrapper code:

from libc.string cimport strcpy
from cython cimport view

cdef extern void donlp2()

#global varaibles used by donlp2
#only import those variables that are necessary

cdef extern int n
cdef extern int nlin
cdef extern int nonlin
cdef extern int nstep
cdef extern int iterma

cdef extern int icf
cdef extern int icgf

cdef extern double *x
cdef extern char name[41]

cdef extern double del0
cdef extern double tau
cdef extern double tau0
cdef extern int analyt
cdef extern double epsdif
cdef extern int nreset
cdef extern int silent
cdef extern double *low
cdef extern double *up
cdef extern double optite

#Below are used only if bloc is True
cdef extern double *xtr
cdef extern double *fu
cdef extern double **fugrad
cdef extern int bloc

class DonlpProblem:
    """
    Contains all the inputs, including python functions, to 
    solve a constrained nonlinear problem using donlp2.
    """

    def __init__(self,
                 x0, 
                 ef,
                 egradf,
                 low,
                 up,
                 nonlin,
                 activeConstraintTolerance,
                 name,
                 bloc=False,
                 eval_extern=None,
                 econ=None,
                 maxIter=4000,
                 maxBacktrackIter=20,
                 descentVsFeasibilityWeight=0.1, 
                 analyticDerivatives=True,
                 silent=False,
                 nreset=4):
        self.bloc = bloc
        if self.bloc:
            self.eval_extern = eval_extern
        else:
            self.ef = ef
            self.egradf = egradf
        self.econ = econ
        self.n = x0.size
        assert(nonlin+self.n == low.size)
        assert(nonlin+self.n == up.size)
        self.x0 = x0
        self.low = low
        self.up = up
        self.nonlin = nonlin
        self.maxIter = maxIter
        self.maxBacktrackIter = maxBacktrackIter
        self.name = name
        self.activeConstraintTolerance = activeConstraintTolerance
        self.descentVsFeasibilityWeight = descentVsFeasibilityWeight
        self.silent = silent
        self.analyticDerivatives = analyticDerivatives
        self.nreset = nreset

    def run(self):
        """
        Solve problem using donlp2.
        """
        global globalDonlpProblem
        globalDonlpProblem = self
        donlp2()

    def _user_init_size(self):
        """
        Set global variables related to problem size and maximum number
        of iterations.
        """
        global n, nlin, nonlin, iterma, nstep
        n = self.n
        nlin = 0
        nonlin = self.nonlin
        iterma = self.maxIter
        nstep = self.maxBacktrackIter

    def _user_init(self):
        """
        Initialize various problem data unrelated to sizes. This includes
        the problem name, initial point, tolerances, bound constraints,
        and whether analytic gradients are given.
        """
        global name, x, del0, tau0, tau, analyt, epsdif, nreset
        global silent, low, up, bloc

        strcpy(name, self.name)

        for i, xi in enumerate(self.x0):
            x[i+1] = xi

        for i, lowi in enumerate(self.low):
            low[i+1] = lowi

        for i, upi in enumerate(self.up):
            up[i+1] = upi

        bloc = <int> self.bloc
        del0 = self.activeConstraintTolerance
        tau0 = 0.5e0
        tau  = self.descentVsFeasibilityWeight
        analyt = <int>self.analyticDerivatives
        epsdif = 0.e0
        nreset = self.nreset
        silent = <int>self.silent


cdef public void user_init_size():
    """
    Called by donlp, delegate to problem object.
    """
    globalDonlpProblem._user_init_size()

cdef public void user_init(void):
    """
    Called by donlp, delegate to problem object.
    """
    globalDonlpProblem._user_init() 

cdef public void ef(double *x, double *fx):
    """
    Called by donlp, delegate to problem object.
    """
    global icf
    icf += 1
    cdef int xSize = globalDonlpProblem.n+1
    cdef view.array xarr = <double[:xSize]> x
    fx[0] = globalDonlpProblem.ef(xarr[1:])

cdef public void egradf(double *x, double *gradf):
    """
    Called by donlp, delegate to problem object.
    """
    global icgf
    icgf += 1
    cdef int xSize = globalDonlpProblem.n+1
    cdef view.array xarr = <double[:xSize]> x
    cdef view.array gradArr = <double [:xSize]> gradf
    globalDonlpProblem.egradf(xarr[1:], gradArr[1:])

cdef public void eval_extern(int mode):
    """
    Called by donlp, delegate to problem object.
    """
    global icf, icgf
    global fu, fugrad

    cdef int xSize = globalDonlpProblem.n+1
    cdef view.array xarr = <double[:xSize]> xtr
    if mode == 1:
        icf += 1
        fu[0] = globalDonlpProblem.eval_extern(mode, xarr[1:])
    elif mode == 2:
        icf += 1
        icgf += 1
        tmp1, tmp2 = globalDonlpProblem.eval_extern(mode, xarr[1:])
        fu[0] = tmp1
        for i in range(tmp2.size):
            fugrad[i+1][0] = tmp2[i]

cdef public void econ(int type, int *liste, double *x, 
                      double *con, int *err):
    pass

cdef public void econgrad(int *liste, int shift, 
                          double *x, double **grad):
    pass

cdef public void newx(double *x, double *u, int itstep, 
                      double **accinf, int *cont):
    cont[0] = 1

cdef public void setup(void):
    pass

cdef public void solchk(void):
    pass

The wrapper code works for some simple toy cases, like the one below:

import cydon
import numpy as np


def main():

    def ef(x):
        return 100*(x[1]-x[0]**2)**2 + (x[0]-1)**2
    def egradf(x, g):
        g[0] = 200*(x[0]**2-x[1])*x[0] + 2*(x[0]-1)
        g[1] = 200*(x[1] - x[0]**2)
    x0 = np.array([15,-15])
    n = x0.size
    low = -1.0e10 * np.ones(n)
    up = 1.0e10 * np.ones(n)

    def eval_extern(mode, x):
        fx = 100*(x[1]-x[0]**2)**2 + (x[0]-1)**2
        if mode == 1:
            return fx
        elif mode == 2:
            gradfx = np.ones(2)
            gradfx[0] = 200*(x[0]**2-x[1])*x[0] + 2*(x[0]-1)
            gradfx[1] = 200*(x[1] - x[0]**2)
            return fx, gradfx

    problem = cydon.DonlpProblem( 
        x0=x0,
        ef=None, 
        egradf=None,
        bloc=True,
        eval_extern=eval_extern,
        activeConstraintTolerance=1.00e-1,
        low=low,
        up=up,
        nonlin=0,
        silent=False,
        name="blabloc"
    )

    problem.run()

if __name__ == "__main__":
    main()

The problem I actually want to solve involves more setup, using array operations with numpy and cvxopt. When I create it the code promptly segfaults. Stepping through in gdb and using valgrind only reveals that a line in the optimization library that looks like:

foo = malloc_wrapper(size);

terminates with the following error from valgrind:

==31631== Process terminating with default action of signal 11 (SIGSEGV)
==31631==  Bad permissions for mapped region at address 0x8BFF930
==31631==    at 0x17984DBC: global_mem_malloc (donlp2.c:8690)
==31631==    by 0x17985FA1: donlp2 (donlp2.c:204)
==31631==    by 0x179504D2: __pyx_pw_5cydon_12DonlpProblem_3run (cydon.c:2215)
==31631==    by 0x4E78BD7: PyObject_Call (abstract.c:2529)
==31631==    by 0x4F1BFA1: PyEval_EvalFrameEx (ceval.c:4239)
==31631==    by 0x4F22C08: PyEval_EvalCodeEx (ceval.c:3253)
==31631==    by 0x4F209B4: PyEval_EvalFrameEx (ceval.c:4117)
==31631==    by 0x4F21E47: PyEval_EvalFrameEx (ceval.c:4107)
==31631==    by 0x4F22C08: PyEval_EvalCodeEx (ceval.c:3253)
==31631==    by 0x4F22C81: PyEval_EvalCode (ceval.c:667)
==31631==    by 0x4F46350: PyRun_FileExFlags (pythonrun.c:1370)
==31631==    by 0x4F465F6: PyRun_SimpleFileExFlags (pythonrun.c:948)

The segfault happens before the C library has done any real work. It's simply initializing variables. Line 8690 is

foo = malloc_wrapper(sizeOfMalloc);

and line 204 is simply the call

global_mem_malloc();

In an included header file foo is defined to be double*. Note that the memory allocation inside malloc_wrapper succeeded and the function successfully returned. It's the write to foo that is failing.

Any suggestions how to narrow down what is causing this, or how to fix it?

cjordan1
  • 277
  • 1
  • 4
  • 11

0 Answers0