As the above commenter said, you shouldn't use c-style arrays even if you just want to make things 'easy'.
In reality doing things like that makes things harder.
c-style arrays aren't bounds checked. That means they are a source of bugs due to memory unsafety and can lead to all kinds of issues from segfaulting to corrupting data as you read random data from unrelated blocks of memory or even worse write to them.
#include <iostream>
int main() {
int nums[] = {1, 2, 3};
std::cout << nums[3] << std::endl;
}
.
# ./a.out
4196544
No programmer is perfect, every time you implement something like that there is a percentage chance you will be off by one in your bounds or something. Even if you are some programming god most people have to work on a team with people who aren't. In many cases no one will even notice since not every time will cause anything obvious. Memory can be randomly corrupted without causing anything to crash horribly. Until you make a totally unrelated change that causes the memory to be in a different order.
But when you do notice it will often effect something totally unrelated that you code sometime later. Given the fact that you will likely implement many such arrays in your programming lifetime you will likely make things much worse for yourself, you save yourself 10 minutes for each project but end up spending hours tracking down a bug in one.
If you really don't want C++11 then use std::vector<std::vector<std::string>>
. It will use a little more memory so you might loose some performance , but most of the time when people are worried about performance they shouldn't be. Are you are calling this function 10,000 time a second? Even then you could gain more performance from threading the code or preallocating memory. Most of the time people think something has bad performance but in reality the computer is optimizing it away, or the CPU is. Is the performance from the memory allocation going to be worse than trying to find the array size every run?
This is also the case with raw pointers vs std::unique_ptr
, std::shared_ptr
.
If typing all those names looks like a pain, use a typedef to make it nice.
You can also look at using Boost's Array type, boost::array. Or whip up your own custom class.
That's not to say that you should never use that stuff. But you should only use it when you can justify it. The default should be the 'pure' C++ style code.
- Performance (only when you have measured and see that you need it there).
- C compatibility (but most of the time you can just wrap that stuff in the std classes anyway).
If you do feel you need it then. Make sure you unittest your code. And look at using the address and memory sanitizers that ship in current versions of gcc and clang. And quarantine the code as much as possible (ie in classe)s.
That all sounds like a lot of work, but once you have learned to do it, it becomes a habit and build it into your build system then it's just part of the development process. As easy as make test
. And once you have it in one build system, you cut and paste it into everything else you do forever. You have expanded your programmers toolkit. That's all good habits to form even if you don't do that.
But here's the actual answer to your array size question:
std::string arr[][10] = {
{"xxx", "111"},
{"y", "222"},
{"hello", "goodbye"},
{"I like candy", "mmmm"},
{"Math goes here", "this is math"},
{"More random stuff", "adsfdsfasf"},
};
int size = sizeof(arr) / 10 / sizeof(std::string);
std::cout << size << endl; // Prints 6, as in 6 pairs of strings