There is a lot of possibilities. For example, for a Breadth First Search, we note that:
(1) The algorithm never visits the same node twice.(as any path back must be >= the length that put it in the discovered pile already.
(2) At every step, it adds exactly one node.
Thus, it clearly must terminate on any finite graph, as the set of nodes which are discoverable cannot be larger than the set of nodes which are in the graph.
Finally, since, give a start node, it will only terminate when it has reached every node which is connected by any path to the start node, it will always find a path between the start and target if it exists.
You can rewrite these logical steps above in deeper rigour if you like, for example, by showing that the list of visited nodes is strictly increasing, and non convergent (i.e. adding one to something repeatedly tends to infinity) and the termination condition must be met at at most some finite value, and a non convergent increasing function always intersects a given bound exactly once.
BFS is an easy example because it has such simple logic, but proving these things for a given algorithm may be extremely tricky.