I'm trying to find an implementation which flattens a lazy list of lazy lists using interleave
and lz-lst-accumulate
which are procedures that I wrote. This is the code so far:
(define lz-lst-accumulate
(lambda (op initial lz)
(if (empty? lz)
initial
(op (head lz)
(lambda() (lz-lst-accumulate op initial (tail lz)))))))
(define interleave
(lambda (lz1 lz2)
(if (empty? lz1)
(lz2)
(cons (head lz1)
(interleave (lz2) (lambda() (tail lz1)))))))
(define all-div-from-flattened
(lambda (lower)
(lz-lst-accumulate interleave '() (all-div-from lower))))
(define take
(lambda (lz-lst n)
(if (= n 0)
(list)
(cons (car lz-lst)
(take (tail lz-lst) (sub1 n))))))
(define head
(lambda (lz)
(car lz)))
(define tail
(lambda (lz-lst)
((cdr lz-lst))))
(define lz-lst-map
(lambda (f lz)
(if (empty? lz)
lz
(cons (f (head lz))
(lambda () (lz-lst-map f (tail lz)))))))
; Signature: all-div-from (low)
; Type: [Number -> Lazy-list]
; Purpose: return a lazy-list of lazy-lists. The nested lazy-lists
; correspond to the integers greater than lower in an
; increasing order. Each nested lazy-list is the list of
; all integers divisible by i for some i>=lower.
; Pre-conditions: low is an integer
; Tests: > (define lz3 (all-div-from 7))
; > (take lz3 3)
; '((7 . #<procedure>) (8 . #<procedure>) (9 . #<procedure>))
; > (take (head lz3) 3)
; '(7 14 21)
; > (take (head (tail lz3)) 3)
; '(8 16 24)
(define all-div-from
(lambda(lower)
(cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
(lambda() (all-div-from (add1 lower))))))
; Signature: div-from (low int)
; Type: [[Number*Number]-> Lazy-list]
; Purpose: return the lazy-list of all integers that
; are larger than low and divisible by int
; Pre-conditions: int > low
; Tests: > (define lz1 (div-from 5 12))
; > (take lz1 3)
; '(12 24 36)
; > (define lz2 (div-from 7 10))
; > (take lz2 4)
; '(10 20 30 40)
(define div-from
(lambda (lower int)
(lz-lst-filter (lambda(x) (> x (- lower 1)))
(lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))
(define integers-from
(lambda (n) (cons n
(lambda () (integers-from (+ 1 n))))))
(define lz-lst-filter
(lambda (p lz)
(cond ((empty? lz) lz)
((p (head lz))
(cons (head lz)
(lambda () (lz-lst-filter p (tail lz)))))
(else (lz-lst-filter p (tail lz))))))
The procedure all-div-from
receives a lower bound low
and returns a lazy-list of lazy-lists. Each lazy list in it is made by div-from
which receives a lower bound low
and an integer int > low
, and
returns the lazy-list of all integers that are larger than low
and divisible by int
.
An example of input and the correct output:
> (take (all-div-from-flattened 7) 10)
'(7 8 14 9 21 16 28 10 35 24)
But when I try this line in the interpreter:
> (take (all-div-from-flattened 3) 3)
it gets into an infinite loop.
My implementation must use lz-lst-accumulate
, interleave
and all-div-from-flattend
procedures.
Any suggestions on how to make it work?