You may want to add the id
field to your Student
data structure, e.g.:
typedef struct {
int id;
int age;
int phoneNumber;
} Student;
Then, you can define a structure having a fixed header (in this case, this can be the number of students), followed by a variable-sized array of Student
s:
#define ARRAY_OF_ANY_SIZE 1
typedef struct {
int count;
Student students[ARRAY_OF_ANY_SIZE];
} People;
This blog post explains this technique of having "arrays of size 1", including a discussion of the alignment problem.
I won't repeat the original blog post code here. Just consider that you can use the portable offsetof()
instead of the Windows-specific FIELD_OFFSET()
macro.
As a sample code, you may want to consider the following:
#include <stdio.h> /* For printf() */
#include <stddef.h> /* For offsetof() */
#include <stdlib.h> /* For dynamic memory allocation */
typedef struct {
int id;
int age;
int phoneNumber;
} Student;
#define ARRAY_OF_ANY_SIZE 1
typedef struct {
int count;
Student students[ARRAY_OF_ANY_SIZE];
} People;
int main(int argc, char* argv[]) {
People* people;
const int numberOfStudents = 3;
int i;
/* Dynamically allocate memory to store the data structure */
people = malloc(offsetof(People, students[numberOfStudents]));
/* Check memory allocation ... */
/* Fill the data structure */
people->count = numberOfStudents;
for (i = 0; i < numberOfStudents; i++) {
people->students[i].id = i;
people->students[i].age = (i+1)*10;
people->students[i].phoneNumber = 11000 + i;
}
/* Print the data structure content */
for (i = 0; i < people->count; i++) {
printf("id: %d, age=%d, phone=%d\n",
people->students[i].id,
people->students[i].age,
people->students[i].phoneNumber);
}
/* Release the memory allocated by the data structure */
free(people);
return 0;
}
Output:
id: 0, age=10, phone=11000
id: 1, age=20, phone=11001
id: 2, age=30, phone=11002