Here is the question of exercise CLRS 10.3-4
I am trying to solve
It is often desirable to keep all elements of a doubly linked list compact in storage, using, for example, the first m index locations in the multiple-array representation. (This is the case in a paged, virtual-memory computing environment.) Explain how to implement the procedures ALLOCATE OBJECT and FREE OBJECT so that the representation is compact. Assume that there are no pointers to elements of the linked list outside the list itself. (Hint: Use the array implementation of a stack.)
Here is my soln so far
int free;
int allocate()
{
if(free == n+1)
return 0;
int tmp = free;
free = next[free];
return tmp;
}
int deallocate(int pos)
{
for(;pos[next]!=free;pos[next])
{
next[pos] = next[next[pos]];
prev[pos] = prev[next[pos]];
key[pos] = key[next[pos]];
}
int tmp = free;
free = pos;
next[free] = tmp;
}
Now , The problem is , If this is the case , We don't need linked list. If deletion is O(n) we can implement it using normal array. Secondly I have not used the array implementation of stack too . So where is the catch? How should I start?