In C, you can't use a user defined type like a builtin one. If you want to do that, you need to use C++. In that language you can define a class for your fixed point type, overload all the arithmetic operators (+, -, *, /, %, +=, -=, *=, /=, %=, --, ++, cast to other types), so that usage of the instances of this class really behave like the builtin types.
In C, you need to do what you want explicitly. There are two basic approaches.
Approach 1: Do the fixed point adjustments in the user code.
This is overhead-free, but you need to remember to do the correct adjustments. I believe, it is easiest to just add the number of past point bits to the end of the variable name, because the type system won't do you much good, even if you typedef
'd all the point positions you use. Here is an example:
int64_t a_7 = (int64_t)(7.3*(1<<7)); //a variable with 7 past point bits
int64_t b_5 = (int64_t)(3.78*(1<<5)); //a variable with 5 past point bits
int64_t sum_7 = a_7 + (b_5 << 2); //to add those two variables, we need to adjust the point position in b
int64_t product_12 = a_7 * b_5; //the product produces a number with 12 past point bits
Of course, this is a lot of hassle, but at least you can easily check at every point whether the point adjustment is correct.
Approach 2: Define a struct for your fixed point numbers and encapsulate the arithmetic on it in a bunch of functions. Like this:
typedef struct FixedPoint {
int64_t data;
uint8_t pointPosition;
} FixedPoint;
FixedPoint fixed_add(FixedPoint a, FixedPoint b) {
if(a.pointPosition >= b.PointPosition) {
return (FixedPoint){
.data = a.data + (b.data << a.pointPosition - b.pointPosition),
.pointPosition = a.pointPosition
};
} else {
return (FixedPoint){
.data = (a.data << b.pointPosition - a.pointPosition) + b.data,
.pointPosition = b.pointPosition
};
}
}
This approach is a bit cleaner in the usage, however, it introduces significant overhead. That overhead consists of:
The function calls.
The copying of the structs for parameter and result passing, or the pointer dereferences if you use pointers.
The need to calculate the point adjustments at runtime.
This is pretty much similar to the overhead of a C++ class without templates. Using templates would move some decisions back to compile time, at the cost of loosing flexibility.
This object based approach is probably the most flexible one, and it allows you to add support for non-binary point positions in a transparent way.