Basically what you want is P(S) = S_0 U S_1 U ... U S_n where S_i is a set of all sets contained by taking i elements from S. In other words if S= {a, b, c} then S_0 = {{}}, S_1 = {{a},{b},{c}}, S_2 = {{a, b}, {a, c}, {b, c}} and S_3 = {a, b, c}.
The algorithm we have so far is
set P(set S) {
PS = {}
for i in [0..|S|]
PS = PS U Combination(S, i)
return PS
}
We know that |S_i| = nCi where |S| = n. So basically we know that we will be looping nCi times. You may use this information to optimize the algorithm later on. To generate combinations of size i the algorithm that I present is as follows:
Suppose S = {a, b, c} then you can map 0 to a, 1 to b and 2 to c. And perumtations to these are (if i=2) 0-0, 0-1, 0-2, 1-0, 1-1, 1-2, 2-0, 2-1, 2-2. To check if a sequence is a combination you check if the numbers are all unique and that if you permute the digits the sequence doesn't appear elsewhere, this will filter the above sequence to just 0-1, 0-2 and 1-2 which are later mapped back to {a,b},{a,c},{b,c}. How to generate the long sequence above you can follow this algorithm
set Combination(set S, integer l) {
CS = {}
for x in [0..2^l] {
n = {}
for i in [0..l] {
n = n U {floor(x / |S|^i) mod |S|} // get the i-th digit in x base |S|
}
CS = CS U {S[n]}
}
return filter(CS) // filtering described above
}