There are other good answers, so I'm going to give you a very technical answer. Pattern matching is the elimination construct for algebraic data types:
"Elimination construct" means "how to consume or use a value"
"Algebraic data type", in addition to first-class functions, is the big idea in a statically typed functional language like Clean, F#, Haskell, or ML
The idea of algebraic data types is that you define a type of thing, and you say all the ways you can make that thing. As an example, let's define "Sequence of String" as an algebraic data type, with three ways to make it:
data StringSeq = Empty -- the empty sequence
| Cat StringSeq StringSeq -- two sequences in succession
| Single String -- a sequence holding a single element
Now, there are all sorts of things wrong with this definition, but as an example it's interesting because it provides constant-time concatenation of sequences of arbitrary length. (There are other ways to achieve this.) The declaration introduces Empty
, Cat
, and Single
, which are all the ways there are of making sequences. (That makes each one an introduction construct—a way to make things.)
- You can make an empty sequence without any other values.
- To make a sequence with
Cat
, you need two other sequences.
- To make a sequence with
Single
, you need an element (in this case a string)
Here comes the punch line: the elimination construct, pattern matching, gives you a way to scrutinize a sequence and ask it the question what constructor were you made with?. Because you have to be prepared for any answer, you provide at least one alternative for each constructor. Here's a length function:
slen :: StringSeq -> Int
slen s = case s of Empty -> 0
Cat s s' -> slen s + slen s'
Single _ -> 1
At the core of the language, all pattern matching is built on this case
construct. However, because algebraic data types and pattern matching are so important to the idioms of the language, there's special "syntactic sugar" for doing pattern matching in the declaration form of a function definition:
slen Empty = 0
slen (Cat s s') = slen s + slen s'
slen (Single _) = 1
With this syntactic sugar, computation by pattern matching looks a lot like definition by equations. (The Haskell committee did this on purpose.) And as you can see in the other answers, it is possible to specialize either an equation or an alternative in a case
expression by slapping a guard on it. I can't think of a plausible guard for the sequence example, and there are plenty of examples in the other answers, so I'll leave it there.