This is similar to this question. Basically, as @serejja said, your approach is correct and also the most concise one. You could use collection.breakOut
as builder factory argument to the last map
and thereby save the additional iteration to get the Set
type:
l.groupBy(_._2).mapValues(_.map(_._1)(collection.breakOut): Set[Int])
You shouldn't probably go beyond this, unless you really need to squeeze the performance.
Otherwise, this is how a general toMultiMap
function could look like which allows you to control the values collection type:
import collection.generic.CanBuildFrom
import collection.mutable
def toMultiMap[A, K, V, Values](xs: TraversableOnce[A])
(key: A => K)(value: A => V)
(implicit cbfv: CanBuildFrom[Nothing, V, Values]): Map[K, Values] = {
val b = mutable.Map.empty[K, mutable.Builder[V, Values]]
xs.foreach { elem =>
b.getOrElseUpdate(key(elem), cbfv()) += value(elem)
}
b.map { case (k, vb) => (k, vb.result()) } (collection.breakOut)
}
What it does is, it uses a mutable Map during building stage, and values gathered in a mutable Builder
first (the builder is provided by the CanBuildFrom
instance). After the iteration over all input elements has completed, that mutable map of builder values is converted into an immutable map of the values collection type (again using the collection.breakOut
trick to get the desired output collection straight away).
Ex:
val l = List((1,2,3),(4,2,5),(2,3,3),(10,3,2))
val v = toMultiMap(l)(_._2)(_._1) // uses Vector for values
val s: Map[Int, Set[Int] = toMultiMap(l)(_._2)(_._1) // uses Set for values
So your annotated result type directs the type inference of the values type. If you do not annotate the result, Scala will pick Vector
as default collection type.