TL;DR: I have a beautifully crafted, continuously running piece of Python code controlling and reading out a physics experiment. Now I want to add an HTTP API.
I have written a module which controls the hardware using USB. I can script several types of autonomously operating experiments, but I'd like to control my running experiment over the internet. I like the idea of an HTTP API, and have implemented a proof-of-concept using Flask's development server.
The experiment runs as a single process claiming the USB connection and periodically (every 16 ms) all data is read out. This process can write hardware settings and commands, and reads data and command responses.
I have a few problems choosing the 'correct' way to communicate with this process. It works if the HTTP server only has a single worker. Then, I can use python's multiprocessing.Pipe for communication. Using more-or-less low-level sockets (or things like zeromq) should work, even for request/response, but I have to implement some sort of protocol: send {'cmd': 'set_voltage', 'value': 900} instead of calling hardware.set_voltage(800) (which I can use in the stand-alone scripts). I can use some sort of RPC, but as far as I know they all (SimpleXMLRPCServer, Pyro) use some sort of event loop for the 'server', in this case the process running the experiment, to process requests. But I can't have an event loop waiting for incoming requests; it should be reading out my hardware! I googled around quite a bit, but however I try to rephrase my question, I end up with Celery as the answer, which mostly fires off one job after another, but isn't really about communicating with a long-running process.
I'm confused. I can get this to work, but I fear I'll be reinventing a few wheels. I just want to launch my app in the terminal, open a web browser from anywhere, and monitor and control my experiment.
Update: The following code is a basic example of using the module:
from pysparc.muonlab.muonlab_ii import MuonlabII
muonlab = MuonlabII()
muonlab.select_lifetime_measurement()
muonlab.set_pmt1_voltage(900)
muonlab.set_pmt1_threshold(500)
lifetimes = []
while True:
data = muonlab.read_lifetime_data()
if data:
print "Muon decays detected with lifetimes", data
lifetimes.extend(data)
The module lives at https://github.com/HiSPARC/pysparc/tree/master/pysparc/muonlab. My current implementation of the HTTP API lives at https://github.com/HiSPARC/pysparc/blob/master/bin/muonlab_with_http_api.
I'm pretty happy with the module (with lots of tests) but the HTTP API runs using Flask's single-threaded development server (which the documentation and the internet tells me is a bad idea) and passes dictionaries through a Pipe as some sort of IPC. I'd love to be able to do something like this in the above script:
while True:
data = muonlab.read_lifetime_data()
if data:
print "Muon decays detected with lifetimes", data
lifetimes.extend(data)
process_remote_requests()
where process_remote_requests
is a fairly short function to call the muonlab
instance or return data. Then, in my Flask views, I'd have something like:
muonlab = RemoteMuonlab()
@app.route('/pmt1_voltage', methods=['GET', 'PUT'])
def get_data():
if request.method == 'PUT':
voltage = request.form['voltage']
muonlab.set_pmt1_voltage(voltage)
else:
voltage = muonlab.get_pmt1_voltage()
return jsonify(voltage=voltage)
Getting the measurement data from the app is perhaps less of a problem, since I could store that in SQLite or something else that handles concurrent access.