The dimensions of this problem are: model.nlf = 4. Each {r} of Kuu or KuuGamma are 500x500 matrices of data.
How to suppress the for-loop? my intuition goes toward using cellfun with a function for logdet.
logDetKuu = 0;
for r=1:model.nlf,
if isfield(model, 'gamma') && ~isempty(model.gamma)
[model.Kuuinv{r}, model.sqrtKuu{r}] = pdinv(model.KuuGamma{r});
model.logDetKuu{r} = logdet(model.KuuGamma{r}, model.sqrtKuu{r});
else
[model.Kuuinv{r}, model.sqrtKuu{r}] = pdinv(model.Kuu{r});
model.logDetKuu{r} = logdet(model.Kuu{r}, model.sqrtKuu{r});
end
logDetKuu = logDetKuu + model.logDetKuu{r};
end
Grateful for pointers. Thanks
Follow up question: Can the following type of for-loops on cell elements be vectorized? nlf = 4; nout = 16; each KuuinvKuy{1,1} are 150x650
for k =1: model.nout,
for r =1: model.nlf,
model.KuuinvKuy{r,k} = model.Kuuinv{r}*model.Kyu{k,r}';
end
end