I have empirical data of 9 sets of patients the data looks in this format
input = [10 -1 1
20 17956 1
30 61096 1
40 31098 1
50 18446 1
60 12969 1
95 7932 1
120 6213 1
188 4414 1
240 3310 1
300 3329 1
610 2623 1
1200 1953 1
1800 1617 1
2490 1559 1
3000 1561 1
3635 1574 1
4205 1438 1
4788 1448 1
];
calibrationfactor_wellcounter =1.841201569;
Here, the first column describes values of time and next one is concentration. As you can see, the concentration increases until a certain time and then decreases exponentially with increase in time.
If I plot the following characteristics, I obtain following curve
I would like to create a script which represents the same behavior cited above. following is the script which i have formulated where concentration linearly increases till certain time period and aftermath it decays exponentially, but when i plot this function i am obtaining linear characteristics , kindly let me know if my logic is appropriate
function c_o = Sample_function(td,t_max,a1,a2,a3,b1,b2,b3)
t =(0: 100 :5000); % time of the sample post injection in mins
c =(0 : 2275.3 :113765);
A_max= max(c);%Max value of Concentration (Peak of the curve)
c_o = zeros(size(t));
c_o(t>td & t<=t_max) = A_max*(t(t>td & t<=t_max)-td);
c_o(t>t_max)=(a1*exp(-b1*(t(t>t_max)-t_max)))+(a2*exp(-b2*(t(t>t_max)-t_max)))+(a3*exp(-b3*(t(t>t_max)-t_max)));
fprintf('plotting Data ...\n');
hold on;
%figure ;
plot(c_o,'erasemode','background');
xlabel('time of the sample in minutes ');
ylabel('Activity of the sample Ba/ml');
title (' Input function: Activity sample VS time ');
pause;
end
The figure i obtained is
In the above plot the decay is linear instead of exponential, let me know how to obtain 3rd order decay this is the line of code i have written to obtain 3rd order decay
c_o(t>t_max)=(a1*exp(-b1*(t(t>t_max)-t_max)))+(a2*exp(-b2*(t(t>t_max)-t_max)))+(a3*exp(-b3*(t(t>t_max)-t_max)));