I am using Boost-Operatators to construct a matrix class. (A toy project). However, I run into issues when I want to mix matrices of different element types.
Basically I have a template class Matrix<T>
, where T
is the element type of that matrix. I'm using Boost-Operators to define operators between instances of Matrix<T>
(e.g. element-wise add), between Matrix<T>
and T
(e.g. scalar multiplication), and if possible also between Matrix<T>
and Matrix<U>
(e.g. real matrix plus complex matrix).
The boost operators support one, or two template arguments. One if you want operators between two objects of the same type, and two if you want mixed operators.
template<typename T>
class Matrix : boost::addable<Matrix<T>> // Add another matrix of same type.
boost::multiplyable2<Matrix<T>,T> // Scalar multiplication with a `T`.
However, I cannot give Matrix<U>
as a second argument, because then my class would have two template arguments and the type would depend on which matrices I can operate with.
template<typename T, typename U>
class Matrix : boost::addable2<Matrix<T,U>,Matrix<U,?>> // Now I have two template arguments.
// That's certainly not what I want!
I also tried implementing my own version of boost::addable
, but this didn't work either. The compiler complains about an uncomplete type.
template<class Derived>
class Addable {
template<class Other>
friend Derived operator+(Derived lhs, const Other &rhs) {
return lhs += rhs;
}
template<class Other>
friend Derived operator+(const Other &lhs, Derived rhs) {
return rhs += lhs;
}
};
Another approach was to define a cast constructor from Matrix<U>
to Matrix<T>
. However, now I have the issue, that those are two different types, and I don't get access to the private members. So, I either need to make more stuff public than I want to, or find a different way of doing this.
How would you implement such a thing?
The full Code
#include <cassert>
#include <utility>
#include <complex>
#include <vector>
#include <algorithm>
#include <iostream>
#include <boost/operators.hpp>
typedef double Real;
typedef std::complex<Real> Complex;
template<typename T>
class Matrix : boost::addable<Matrix<T>>
{
public:
Matrix() = default;
template<typename U>
Matrix(const Matrix<U> &other)
: m_(other.m()), n_(other.n()),
data_(other.data_.begin(), other.data_.end()) { }
Matrix(size_t m, size_t n) : m_(m), n_(n), data_(m*n) { }
Matrix(size_t m, size_t n, const T &initial)
: m_(m), n_(n), data_(m*n, initial) { }
size_t m() const { return m_; }
size_t n() const { return n_; }
size_t size() const {
assert(m_*n_ == data_.size());
return data_.size();
}
const T &operator()(size_t i, size_t j) const { return data_[i*m_ + j]; }
T &operator()(size_t i, size_t j) { return data_[i*m_ + j]; }
void fill(const T &value) {
std::fill(data_.begin(), data_.end(), value);
}
Matrix &operator+=(const Matrix &other) {
assert(dim_match(other));
for (int i = 0; i < size(); ++i) {
data_[i] += other.data_[i];
}
return *this;
}
friend std::ostream &operator<<(std::ostream &o, const Matrix &m) {
if (m.size() == 0) {
o << "()" << std::endl;
return o;
}
for (int i = 0; i < m.m(); ++i) {
o << "( ";
for (int j = 0; j < m.n() - 1; ++j) {
o << m(i,j) << ", ";
}
o << m(i, m.n() - 1) << " )" << std::endl;
}
return o;
}
private:
bool dim_match(const Matrix &other) {
return n_ == other.n_ && m_ == other.m_;
}
private:
int m_, n_;
typedef std::vector<T> Store;
Store data_;
};
int main() {
Matrix<Real> A(2,3, 1.);
Matrix<Complex> B(2,3, Complex(0,1));
auto C = Matrix<Complex>(A) + B;
std::cout << A << std::endl;
std::cout << B << std::endl;
std::cout << C << std::endl;
}