I am trying to organize my results obtained with mlogit for exporting to LaTeX with xtable
. However, I am finding it difficult to prepare the results in adjacent columns as often found in academic publications.
In particular, I am having problems in the last step, where equations need to be moved next to each other.
I am presenting an example with a small dataframe and how far I have gotten so far below. If there is an easier way to do this, I would be happy if you let me know.
#--------------------------- Create test data and run model --------------------#
id <- 1:12
color <- factor(rep(c("blue","red","yellow"), each=4))
value1 <- round(rnorm(12)*5,1)
value2 <- round(runif(12),1)
factor1 <- factor(rep(c("A", "B"), 6))
data_sample <- data.frame(id, color, value1, value2, factor1)
# Reshape data
data_sample2 <- mlogit.data(data_sample, choice="color", shape="wide" )
# Run model
mlogit.ds <- mlogit(color ~ 1 | value2 + value1 + factor1, data=data_sample2)
#summary(mlogit.ds)
# Save model summary
mlogit.ds <- summary(mlogit.ds)
#-------------------------- Prepare table -------------------------------#
mlogit_table <- data.frame(mlogit.ds$CoefTable)
mlogit_table <- mlogit_table[c(1,4)] # to keep only estimates and p-values
mlogit_table <- mlogit_table[order(rownames(mlogit_table)),] # to group all equations together
mlogit_table
Estimate Pr...t..
red:(intercept) 2.33034676 0.4653448
red:factor1B 0.13591855 0.9506175
red:value1 0.26639321 0.2072482
red:value2 -5.64821495 0.1956896
yellow:(intercept) 5.32776498 0.1372126
yellow:factor1B -3.30689681 0.2688475
yellow:value1 -0.09929715 0.6394161
yellow:value2 -7.28057244 0.1335184
#------------------------ Desired result ------------------------------#
red p yellow p
intercept -0.5522404 0.7597343 0.50745137 0.7349326
factor1B -0.6573629 0.7289306 -0.08885928 0.9528689
value1 -0.4058873 0.1495544 0.05956548 0.7833022
value2 0.6370185 0.8398007 -1.30156671 0.6051921
I need help with creating a solution which could adapt to different numbers of equations (depending on how many levels the outcome variable has) and different lengths of each equation (depending on the numbers of predictors).