I'm trying to implement a web prefetching system. The purpose of a system like this is to “predict” future requests and prefetch them.
The system builds a predictive model from web navigation logs (Squid access.log files). The model is a dependency graph, where a node representing URL A has an arc to a node representing URL B if URL B has been requested immediately after URL A.
Once the model is built, the system receives queries of URLs requested by users, and make “predictions” based on the graph. Predictions are resources (URLs) very likely to be requested in the future. So, based on predictions, the system prefetches these resources to store them in cache prior to users' requests.
I'm using the following testing scenario:
- A process simulate multiple clients, requesting URLs in a file using libcurl. The process runs in a different PC from the prefetching system. PCs are connected directly via an ethernet cable
- Requests made by the client simulator are always the same URLs in the same relative time from the first request made. All requests are going to port 3128 (Prefetch PC Squid listen port) (port 80 DNAT to port 3128 in the client).
- The prefetching system runs in a CentOS 6.3 box, kernel 2.6.32-71.el6.i686, 2 core Intel Pentium 4 3.00GHz processor, 4 GB RAM.
- The prefetching system is one process with multiple threads. The main thread creates the predictive model and generates predictions based on queries. A “listener” thread reads URLs requested by users and prefetches predicted URLs using libcurl. “Listening” means reading from a named pipe (called url_fifo) URLs captured live on an interface using tshark:
stdbuf -o0 tshark -i eth1 tcp port 3128 and "tcp[((tcp[12:1] & 0xf0) >> 2):4] = 0x47455420" -T fields -e http.request.full_uri >> url_fifo
- Each 10 minutes (1 cycle) the model is updated based on requests from the last cycle. The client tells the system when a cycle ends and so the model is updated. Once the model is updated, the system tells the client to start requesting URLs from the next cycle.
Here is the situation: Sometimes reading from the named pipe freezes. No URLs are read from the pipe even though tshark keeps capturing URLs and redirecting them to the named pipe. After an hour (or a couple of hours) all “buffered” URLs are read in less than 10 minutes. After that, reading from the pipe keeps going ok again. This situation doesn't happen always (50% of times freezes, 50% no).
It seems that there is a buffering issue, since tshark keeps capturing URLs and all requests are correctly logged in Squid's access.log.
In the beginning, I ran tshark with the -l
option, so that its output becomes line buffered. Then I started using stdbuf -o0
(no buffering). Anyway the situation still happens.
In the system code, I also tried opening and reading the named pipe as a stream (FILE *
) and set the stream as no buffered or line buffered (using setvbuf()
function). The situation still happened.
In some cycles requests are faster than in other cycles. Anyway, it doesn't seems to be a fast producer slow consumer issue, since in many repetitions of the test all URLs are correctly read and processed without any freezes.
Is there something am I missing related to named pipes and buffering? I'd really appreciate some guidance.
Assume networking (interfaces, routing, iptables, squid) is ok. I've not had any issues related to it.
Code (assume necessary header files are included):
functions.c
#define BUFLEN 512
#define QUEUE_LEN 64
#define THREADS_LEN 2
pthread_mutex_t model_lock;
pthread_cond_t model_cond, listen_cond;
pthread_t queries_thread, listen_thread;
short int model_is_updating, model_can_update, program_shutdown;
/* Program execution statistics */
Status * program_status;
/* Thread pool */
threadpool_t *pool;
/* program execution */
int
run(void)
{
Graph_Adj_List * gr = NULL; /* Graph as an adjacency list */
char ** reports = NULL;
unsigned report_counter = 0;
/* Init program status */
program_status = status_init();
/* Load list of custom web navigation reports to be used to build the initial
* version of the predictive model */
reports = file_load_reports(program_config.reports_file);
if (!reports)
return 0;
/* Init mutex and cond */
pthread_mutex_init(&model_lock, NULL);
pthread_cond_init(&model_cond, NULL);
pthread_cond_init(&listen_cond, NULL);
/* Lock */
pthread_mutex_lock (&model_lock);
/* Start first cycle */
status_start_cycle(program_status);
/* Create initial version of the predictive model */
gr = create_model_from_files(reports, &report_counter, program_config.reports_limit);
if (!gr)
{
/* Unlock */
pthread_mutex_unlock (&model_lock);
return 0;
}
/* Unlock */
pthread_mutex_unlock (&model_lock);
/* Start threads */
if (pthread_create(&queries_thread, NULL, fifo_predictions_threaded, (void *)gr) ||
pthread_create(&listen_thread, NULL, listen_end_of_cycle, NULL))
program_shutdown = 1;
/* main loop */
while(!program_shutdown)
{
/* lock */
pthread_mutex_lock (&model_lock);
/* wait for clients' announcement of the end of requests from current cycle */
while (!model_can_update)
pthread_cond_wait(&model_cond, &model_lock);
/* set updating flag */
model_is_updating = 1;
/* Update predictive model, based on Squid's access.log from (about to finish)
* current cycle */
adj_list_update_access(gr, program_config.access_file);
/* Save statistics related to the current cycle and finish it */
status_finish_cycle(program_status);
/* Check if last custom report has been read */
if (!reports[report_counter])
{
program_shutdown = 1;
pthread_mutex_unlock (&model_lock);
break;
}
/* Start a new cycle */
status_start_cycle(program_status);
/* Read a new custom report and update the predictive model */
update_model(gr, reports[report_counter]);
report_counter++;
/* Updating is done */
model_is_updating = 0;
/* Model can't be updated until client announces the end of the cycle
* that has just started */
model_can_update = 0;
/* Tell client to start sending requests from the new cycle */
if (!signal_start_cycle())
{
program_shutdown = 1;
pthread_mutex_unlock (&model_lock);
break;
}
/* Signal listener thread that a new cycle has begin */
pthread_cond_signal(&listen_cond);
/* Unlock */
pthread_mutex_unlock (&model_lock);
}
/* Finish threads */
pthread_cancel(listen_thread);
pthread_cancel(queries_thread);
pthread_join(listen_thread, NULL);
pthread_join(queries_thread, NULL);
/* Free memory */
adj_list_free_all2(&gr);
file_reports_free_all(&reports);
pthread_cond_destroy(&model_cond);
pthread_cond_destroy(&listen_cond);
pthread_mutex_destroy(&model_lock);
status_free(&program_status);
return 1;
}
void *
fifo_predictions_threaded(void * data)
{
Graph_Adj_List * gr = (Graph_Adj_List *) data;
/* Set thread cancel type */
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
while (!program_shutdown)
{
pthread_mutex_lock(&model_lock);
/* Pause reading from named pipe while the model is being updated */
while(model_is_updating)
pthread_cond_wait(&listen_cond, &model_lock);
pthread_mutex_unlock(&model_lock);
/* Read URLs from named pipe */
fifo_predictions(gr, program_config.fifo);
}
pthread_exit(NULL);
return NULL;
}
int
fifo_predictions(Graph_Adj_List * gr, const u8 * fifo)
{
u8 cad[BUFLEN] = { '\0' };
u8 * ini = NULL, * fin = NULL, * fullurl = NULL;
int i, fifo_descriptor, read_urls = 0, fullurl_len = 0, incomplete_url = 1;
FILE * fifo_file = NULL;
/* Open fifo in blocking mode */
fifo_descriptor = open(CHAR_CAST fifo, O_RDONLY);
/* Open fifo as a stream */
// fifo_file = fopen(fifo, "r");
// if (!fifo_file)
if (fifo_descriptor == -1)
return 0;
/* If fifo is opened as a stream, set it line buffered */
// setlinebuf(fifo_file);
do
{
if ((i = read(fifo_descriptor, cad, BUFLEN - 1)) == -1)
// if ( fgets(cad, BUFLEN-1, fifo_file) == NULL)
ERROR(__FILE__, __FUNCTION__, __LINE__, "Fifo read error");
else
{
// i = strlen(cad);
cad[i] = '\0';
read_urls = 0;
if (i > 0)
{
int j = 0;
for (j = 0, ini = cad, fin = NULL ; cad[j] != '\0'; j++)
{
if (cad[j] == '\n')
{
/* Save URL */
fin = &cad[j];
ini = (*ini == '\n' ? ini + 1 : ini);
/* Check if string is a continuation of the previously read URL */
read_urls = fin - ini;
read_urls = read_urls >= 0 ? read_urls : 0;
/* Save URL in fullurl string */
fullurl = realloc(fullurl, fullurl_len + read_urls + 1);
memcpy(&fullurl[fullurl_len], ini, read_urls);
fullurl[fullurl_len + read_urls] = '\0';
ini = fin;
incomplete_url = fullurl_len = 0;
/* Ask the model for predictions and fetch them */
fetch_url_predictions2(gr, fullurl);
u8_free(&fullurl);
} else
incomplete_url = 1;
}
if (incomplete_url)
{
ini = (*ini == '\n' ? ini + 1 : ini);
read_urls = &cad[j] - ini;
read_urls = read_urls >= 0 ? read_urls : 0;
fullurl = realloc(fullurl, fullurl_len + read_urls);
memcpy(&fullurl[fullurl_len], ini, read_urls);
fullurl_len += read_urls;
}
}
}
} while (i > 0);
close(fifo_descriptor);
// fclose (fifo_file);
return 1;
}
int
fetch_url_predictions2(Graph_Adj_List * gr, u8 * in_url)
{
String * string_url = NULL;
Headnode * head = NULL;
LinkedList * list = NULL;
LinkedListElem * elem = NULL;
/* Use custom string type */
string_url = string_create_no_len(in_url);
if (!string_url)
return 0;
pthread_mutex_lock(&model_lock);
/* Get URL node */
head = adj_list_get_node(gr, string_url);
if (head)
{
/* Get predictions (URLs) as a linked list */
list = adj_list_predictions_to_list(head);
if (!list)
{
string_free_all(&string_url);
return 0;
}
pthread_mutex_unlock(&model_lock);
/* Callback fetches URLs */
list->callback = &curl_callback_void;
if (!pool)
pool = threadpool_create(THREADS_LEN, QUEUE_LEN, 0);
/* Load URLs to be fetched to threadpool's task queue */
for (elem = list->first; elem; elem = elem->next)
{
CallbackArg arg;
arg.data = arg.copy(elem->data);
threadpool_add_copy_arg(pool, list->callback, &arg, 1, sizeof(arg), 0);
}
linked_list_free_all(&list);
}
pthread_mutex_unlock(&model_lock);
string_free_all(&string_url);
return 1;
}
fetch.c
void
curl_callback_void(void * data)
{
CallbackArg * arg = (CallbackArg *) data;
char * url = (char *) arg->data;
fetch_url(url);
}
static size_t
write_data(void *buffer, size_t size, size_t nmemb, void *userp)
{
return size * nmemb;
}
int
fetch_url(char * url)
{
CURL *curl;
CURLcode res;
struct timeval time;
char * time_string = NULL;
curl = curl_easy_init();
if (curl)
{
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, &write_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, NULL);
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1);
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1);
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
curl_easy_setopt(curl, CURLOPT_CONNECTTIMEOUT, 15);
curl_easy_setopt(curl, CURLOPT_TIMEOUT, 10);
/* Perform the request, res will get the return code */
res = curl_easy_perform(curl);
gettimeofday(&time, NULL);
time_string = timeval_to_str(&time);
/* Check for errors */
if (res != CURLE_OK)
{
fprintf(stderr, "\ntime %s curl_easy_perform() (url %s) failed: %s\n",
time_string, url, curl_easy_strerror(res));
}
else
{
fprintf(stderr, "\ntime %s curl_easy_perform() (url %s) fetched ok\n",
time_string, url);
}
fflush(stderr);
free (time_string);
curl_easy_cleanup(curl);
}
return 0;
}
network.c
/*
* Code based on Beej's Networking Guide
*/
#define MSG_LEN 5
#define QUEUE_SIZE 5
extern pthread_mutex_t model_lock;
extern pthread_cond_t model_cond;
extern short int model_can_update, program_shutdown;
extern Config program_config;
// get sockaddr, IPv4 or IPv6:
static void *
get_in_addr(struct sockaddr *sa) {
if (sa->sa_family == AF_INET) {
return &(((struct sockaddr_in*) sa)->sin_addr);
}
return &(((struct sockaddr_in6*) sa)->sin6_addr);
}
void *
listen_end_of_cycle(void * data)
{
int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
struct addrinfo hints, *servinfo, *p;
struct sockaddr_storage their_addr; // connector's address information
socklen_t sin_size;
int yes = 1;
char s[INET_ADDRSTRLEN], msg[MSG_LEN], *str = NULL;
int rv;
int read_bytes;
struct timeval actual_time;
/* Set thread cancel type */
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL );
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // use my IP
if ((rv = getaddrinfo(NULL, program_config.listen_port, &hints, &servinfo))
!= 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return "error";
}
// loop through all the results and bind to the first we can
for (p = servinfo; p != NULL ; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol))
== -1) {
perror("server: socket");
continue;
}
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int))
== -1) {
perror("setsockopt");
return "error";
}
if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
close(sockfd);
perror("server: bind");
continue;
}
break;
}
if (p == NULL ) {
fprintf(stderr, "server: failed to bind\n");
return "error";
}
freeaddrinfo(servinfo); // all done with this structure
if (listen(sockfd, QUEUE_SIZE) == -1) {
perror("listen");
return "error";
}
while (!program_shutdown)
{
sin_size = sizeof their_addr;
new_fd = accept(sockfd, (struct sockaddr *) &their_addr, &sin_size);
if (new_fd == -1) {
perror("accept");
continue;
}
inet_ntop(their_addr.ss_family,
get_in_addr((struct sockaddr *) &their_addr), s, sizeof s);
if ((read_bytes = recv(new_fd, msg, MSG_LEN - 1, 0)) == -1) {
perror("recv");
continue;
}
close(new_fd);
msg[read_bytes] = '\0';
/* Check received message */
if (strcmp(msg, "DONE")) {
perror("Not valid message");
continue;
}
printf("\ngot \"DONE\" from %s\n", s);
fflush(stdout);
/* Lock */
pthread_mutex_lock(&model_lock);
/* Flag used by main thread to allow model update */
model_can_update = 1;
/* Signal model can be updated */
pthread_cond_signal(&model_cond);
/* Unlock */
pthread_mutex_unlock(&model_lock);
}
close(sockfd);
pthread_exit(NULL);
return "ok";
}
int signal_start_cycle(void) {
int sockfd;
struct addrinfo hints, *servinfo, *p;
int rv;
char s[INET6_ADDRSTRLEN], *str = NULL;
struct timeval actual_time, aux_time;
struct timeval connect_timeout = { 15, 0 }, max_connect_time = { 0, 0 };
short int connected = 0;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
if ((rv = getaddrinfo(program_config.client_ip, program_config.client_port,
&hints, &servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return 0;
}
gettimeofday(&aux_time, NULL);
timeval_add(aux_time, connect_timeout, &max_connect_time);
/* Try several times to connect to the remote side */
do {
// loop through all the results and connect to the first we can
for (p = servinfo; p != NULL ; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol))
== -1) {
perror("client: socket");
continue;
}
gettimeofday(&actual_time, NULL )
printf("\ntrying to connect %s\n", program_config.client_ip);
fflush(stdout);
if (connect(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
close(sockfd);
perror("client: connect");
continue;
}
connected = 1;
break;
}
} while (!connected && !timeval_greater_than(actual_time, max_connect_time));
if (p == NULL ) {
fprintf(stderr, "client: failed to connect\n");
return 0;
}
inet_ntop(p->ai_family, get_in_addr((struct sockaddr *) p->ai_addr), s,
sizeof s);
printf("\nMAIN THREAD: connecting to %s\n", s);
fflush(stdout);
freeaddrinfo(servinfo); // all done with this structure
if (send(sockfd, "DONE", 4, 0) == -1)
{
perror("send");
return 0;
}
printf("\nsent \"DONE\" to %s\n", s);
fflush(stdout);
close(sockfd);
return 1;
}