The K-Means algorithm uses a Distance Function such as Euclidean Distance or Manhattan Distance, which are computed over vector-based instances. The K-Medoid algorithm instead uses a more general (and less constrained) distance function: aka pair-wise distance function.
This distinction works well in contexts like Complex Data Types or relational rows, where the instances have a high number of dimensions.
High dimensionality problem
In standard clustering libraries and the k-means algorithms, the distance computation phase can spend a lot of time scanning the entire vector of attributes that belongs to an instance; for instance, in the context of documents clustering, using the standard TF-IDF representation. During the computation of the cosine similarity, the distance function scans all the possible words that appear in the whole collection of documents. Which in many cases can be composed by millions of entries. This is why, in this domain, some authors [1] suggests to restrict the words considered to a subset of N most frequent word of that language.
Using K-Kedoids there is no need to represent and store the documents as vectors of word frequencies.
As an alternative representation for the documents is possible to use the set of words appearing at least twice in the document; and as a distance measure, there can be used Jaccard Distance.
In this case, vector representation is long as the number of words in your dictionary.
Heterogeneousity and Complex Data Types.
There are many domains where is considerably better to abstract the implementation of an instance:
- Graph's nodes clustering;
- Car driving behaviour, represented as GPS routes;
Complex data type allows the design of ad-hoc distance measures which can fit better with the proper data domain.
[1] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.
Source: https://github.com/eracle/Gap