I was trying to answer this problem, using just recursion (Dynamic programming) http://en.wikipedia.org/wiki/Longest_increasing_subsequence
From the article, and around SO, I realise the most efficient existing solution is O(nlgn). My solution is O(N), and I cannot find a case that it fails. I include unit test cases that I used.
import static org.junit.Assert.assertEquals;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.junit.Test;
public class LongestIncreasingSubseq {
public static void main(String[] args) {
int[] arr = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 1};
getLongestSubSeq(arr);
}
public static List<Integer> getLongestSubSeq(int[] arr) {
List<Integer> indices = longestRecursive(arr, 0, arr.length-1);
List<Integer> result = new ArrayList<>();
for (Integer i : indices) {
result.add(arr[i]);
}
System.out.println(result.toString());
return result;
}
private static List<Integer> longestRecursive(int[] arr, int start, int end) {
if (start == end) {
List<Integer> singleton = new ArrayList<>();
singleton.add(start);
return singleton;
}
List<Integer> bestRightSubsequence = longestRecursive(arr, start+1, end); //recursive call down the array to the next start index
if (bestRightSubsequence.size() == 1 && arr[start] > arr[bestRightSubsequence.get(0)]) {
bestRightSubsequence.set(0, start); //larger end allows more possibilities ahead
} else if (arr[start] < arr[bestRightSubsequence.get(0)]) {
bestRightSubsequence.add(0, start); //add to head
} else if (bestRightSubsequence.size() > 1 && arr[start] < arr[bestRightSubsequence.get(1)]) {
//larger than head, but still smaller than 2nd, so replace to allow more possibilities ahead
bestRightSubsequence.set(0, start);
}
return bestRightSubsequence;
}
@Test
public void test() {
int[] arr1 = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 1};
int[] arr2 = {7, 0, 9, 2, 8, 4, 1};
int[] arr3 = {9, 11, 2, 13, 7, 15};
int[] arr4 = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int[] arr5 = {1, 2, 9, 4, 7, 3, 11, 8, 14, 6};
assertEquals(getLongestSubSeq(arr1), Arrays.asList(0, 4, 6, 9, 11, 15));
assertEquals(getLongestSubSeq(arr2), Arrays.asList(0, 2, 8));
assertEquals(getLongestSubSeq(arr3), Arrays.asList(9, 11, 13, 15));
assertEquals(getLongestSubSeq(arr4), Arrays.asList(10, 22, 33, 50, 60, 80));
assertEquals(getLongestSubSeq(arr5), Arrays.asList(1, 2, 4, 7, 11, 14));
}
}
The cost is strictly O(n) because of the relation T(n) = T(n-1) + O(1) => T(n) = O(n)
Can anyone find a case where this fails, or any bugs there are? Many thanks.
UPDATE: Thanks everyone for pointing out my mistake in previous implementation. Final code below passes all test cases that it used to fail.
The idea is to list (compute) all possible increasing subsequences (each starts from index i from 0 to N.length-1) and pick the longest subsequence. I use memoization (using a hash table) to avoid recomputation of already computed subsequences - so for each starting index we only compute all increasing subsequences once.
However, I am not certain of how to formally derive time complexity in this case - I would be grateful if anyone can shed light on this. Many thanks.
import static org.junit.Assert.assertEquals;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.junit.Test;
public class LongestIncreasingSubsequence {
public static List<Integer> getLongestSubSeq(int[] arr) {
List<Integer> longest = new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
List<Integer> candidate = longestSubseqStartsWith(arr, i);
if (longest.size() < candidate.size()) {
longest = candidate;
}
}
List<Integer> result = new ArrayList<>();
for (Integer i : longest) {
result.add(arr[i]);
}
System.out.println(result.toString());
cache = new HashMap<>(); //new cache otherwise collision in next use - because object is static
return result;
}
private static Map<Integer, List<Integer>> cache = new HashMap<>();
private static List<Integer> longestSubseqStartsWith(int[] arr, int startIndex) {
if (cache.containsKey(startIndex)) { //check if already computed
//must always return a clone otherwise object sharing messes things up
return new ArrayList<>(cache.get(startIndex));
}
if (startIndex == arr.length-1) {
List<Integer> singleton = new ArrayList<>();
singleton.add(startIndex);
return singleton;
}
List<Integer> longest = new ArrayList<>();
for (int i = startIndex + 1; i < arr.length; i++) {
if (arr[startIndex] < arr[i]) {
List<Integer> longestOnRight = longestSubseqStartsWith(arr, i);
if (longestOnRight.size() > longest.size()) {
longest = longestOnRight;
}
}
}
longest.add(0, startIndex);
List<Integer> cloneOfLongest = new ArrayList<>(longest);
//must always cache a clone otherwise object sharing messes things up
cache.put(startIndex, cloneOfLongest); //remember this subsequence
return longest;
}
@Test
public void test() {
int[] arr1 = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 1};
int[] arr2 = {7, 0, 9, 2, 8, 4, 1};
int[] arr3 = {9, 11, 2, 13, 7, 15};
int[] arr4 = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int[] arr5 = {1, 2, 9, 4, 7, 3, 11, 8, 14, 6};
int[] arr6 = {0,0,0,0,0,0,1,1,1,1,2,3,0,0,0,1,1,0,1,1,0,1,0,3};
int[] arr7 = {0,1,2,0,1,3};
int[] arr8 = {0,1,2,3,4,5,1,3,8};
assertEquals(getLongestSubSeq(arr1), Arrays.asList(0, 4, 6, 9, 13, 15));
assertEquals(getLongestSubSeq(arr2), Arrays.asList(0, 2, 8));
assertEquals(getLongestSubSeq(arr3), Arrays.asList(9, 11, 13, 15));
assertEquals(getLongestSubSeq(arr4), Arrays.asList(10, 22, 33, 50, 60, 80));
assertEquals(getLongestSubSeq(arr5), Arrays.asList(1, 2, 4, 7, 11, 14));
assertEquals(getLongestSubSeq(arr6), Arrays.asList(0,1,2,3));
assertEquals(getLongestSubSeq(arr7), Arrays.asList(0,1,2,3));
assertEquals(getLongestSubSeq(arr8), Arrays.asList(0, 1, 2, 3, 4, 5, 8));
}
public static void main(String[] args) {
int[] arr1 = {7, 0, 9, 2, 8, 4, 1};
System.out.println(getLongestSubSeq(arr1));
}
}