I have to solve a problem when Given a grid size N x M , I have to find the number of parallelograms that "can be put in it", in such way that they every coord is an integer.
Here is my code:
/*
~Keep It Simple!~
*/
#include<fstream>
#define MaxN 2005
int N,M;
long long Paras[MaxN][MaxN]; // Number of parallelograms of Height i and Width j
long long Rects; // Final Number of Parallelograms
int cmmdc(int a,int b)
{
while(b)
{
int aux = b;
b = a -(( a/b ) * b);
a = aux;
}
return a;
}
int main()
{
freopen("paralelograme.in","r",stdin);
freopen("paralelograme.out","w",stdout);
scanf("%d%d",&N,&M);
for(int i=2; i<=N+1; i++)
for(int j=2; j<=M+1; j++)
{
if(!Paras[i][j])
Paras[i][j] = Paras[j][i] = 1LL*(i-2)*(j-2) + i*j - cmmdc(i-1,j-1) -2; // number of parallelograms with all edges on the grid + number of parallelograms with only 2 edges on the grid.
Rects += 1LL*(M-j+2)*(N-i+2) * Paras[j][i]; // each parallelogram can be moved in (M-j+2)(N-i+2) places.
}
printf("%lld", Rects);
}
Example : For a 2x2 grid we have 22 possible parallelograms.
My Algorithm works and it is correct, but I need to make it a little bit faster. I wanna know how is it possible.
P.S. I've heard that I should pre-process the greatest common divisor and save it in an array which would reduce the run-time to O(n*m), but I'm not sure how to do that without using the cmmdc ( greatest common divisor ) function.