I need a function that produces primes in F#. I found this:
let primesSeq =
let rec nextPrime n p primes =
if primes |> Map.containsKey n then
nextPrime (n + p) p primes
else
primes.Add(n, p)
let rec prime n primes =
seq {
if primes |> Map.containsKey n then
let p = primes.Item n
yield! prime (n + 1) (nextPrime (n + p) p (primes.Remove n))
else
yield n
yield! prime (n + 1) (primes.Add(n * n, n))
}
prime 2 Map.empty
This works very well, but sometimes I need to work with int64/BigInts as well. Is there a more clever way of reusing this code than providing another sequences like these:
let primesSeq64 = Seq.map int64 primesSeq
let primesBigInts = Seq.map (fun (x : int) -> BigInteger(x)) primesSeq
I've heard about modifying a code using "inline" and "LanguagePrimitives", but all I've found was connected with function while my problem is related to a value.
Moreover - I'd like to have a function that works with integer types and computes a floor of a square root.
let inline sqRoot arg = double >> Math.Sqrt >> ... ?
but I can't see a way of returning the same type as "arg" is, as Math.Sqrt returns a double. Again - is there anything better than reimplementing the logic that computes a square root by myself ?