Working on a project to do some prediction with PyBrain, however I want to know how I can restrict the domain of the NN's output in an easy way so that output layer only produces values in domain [0..1].
Currently, I get negatives values in some activations of the net.
I have searched through the PyBrain documentation without coming across any methods or method parameters that seem to indicate this is possible. Pertinent code sample below:
self.pybrain_net_date = buildNetwork(self.pb_indim, hidden_dim, hidden_dim, 1, hiddenclass=SigmoidLayer, outclass=LinearLayer, bias=True)
self.pybrain_net_amount = buildNetwork(self.pb_indim, hidden_dim, hidden_dim, 1, hiddenclass=SigmoidLayer, outclass=LinearLayer, bias=True)
trainer_date = BackpropTrainer(self.pybrain_net_date, self.pbds_train_date)
trainer_amount = BackpropTrainer(self.pybrain_net_amount, self.pbds_train_amount)
print trainer_date.trainUntilConvergence(self.pbds_train_date, 30, verbose=True, validationProportion=0.20)
print trainer_amount.trainUntilConvergence(self.pbds_train_amount, 30, verbose=True, validationProportion=0.20)
for index, row in input_dataframe.iterrows():
date = neuralnet_date.activate(row)
amount = neuralnet_amount.activate(row)
prediction_df['Expected Date'].ix[index] = date
prediction_df['Expected Amount'].ix[index] = amount