Floating point is always subject to roundoff error; that's one of the hazards you need to be aware of, and actively manage, when working with it. The proper way to handle it, if you must use floats is to figure out what the expected amount of accumulated error is and allow for that in comparisons and printouts -- round off appropriately, compare for whether the difference is within that range rather than comparing for equality, etcetera.
There is no exact binary-floating-point representation of simple things like 1/10th, for example.
(As others have noted, you could rewrite the problem to avoid using the floating-point-based solution entirely, but since you asked specifically about working log() I wanted to address that question; apologies if I'm off target. Some of the other answers provide specific suggestions for how you might round off the result. That would "solve" this particular case, but as your floating operations get more complicated you'll have to continue to allow for roundoff accumulating at each step and either deal with the error at each step or deal with the cumulative error -- the latter being the more complicated but more accurate solution.)
If this is a serious problem for an application, folks sometimes use scaled fixed point instead (running financial computations in terms of pennies rather than dollars, for example). Or they use one of the "big number" packages which computes in decimal rather than in binary; those have their own round-off problems, but they round off more the way humans expect them to.