i am newbie and just want to implement Hierarchical Agglomerative clustering for RGB images. For this I extract all values of RGB from an image. And I process image.Next I find its distance and then develop the linkage. Now from linkage I want to extract my original data (i.e RGB values) on specified indices with indices id. Here is code I have done so far.
image = Image.open('image.jpg')
image = image.convert('RGB')
im = np.array(image).reshape((-1,3))
rgb = list(im.getdata())
X = pdist(im)
Y = linkage(X)
I = inconsistent(Y)
based on the 4th column of consistency. I opt minimum value of the cutoff in order to get maximum clusters.
cutoff = 0.7
cluster_assignments = fclusterdata(Y, cutoff)
# Print the indices of the data points in each cluster.
num_clusters = cluster_assignments.max()
print "%d clusters" % num_clusters
indices = cluster_indices(cluster_assignments)
ind = np.array(enumerate(rgb))
for k, ind in enumerate(indices):
print "cluster", k + 1, "is", ind
dendrogram(Y)
I got results like this
cluster 6 is [ 6 11]
cluster 7 is [ 9 12]
cluster 8 is [15]
Means cluster 6 contains the indices of 6 and 11 leafs. Now at this point I stuck in how to map these indices to get original data(i.e rgb values). indices of each rgb values to each pixel in the image. And then I have to generate codebook to implement Agglomeration Clustering. I have no idea how to approach this task. Read a lot of stuff but nothing clued.