I'm running k-means clustering on a data frame df1, and I'm looking for a simple approach to computing the closest cluster center for each observation in a new data frame df2 (with the same variable names). Think of df1 as the training set and df2 on the testing set; I want to cluster on the training set and assign each test point to the correct cluster.
I know how to do this with the apply
function and a few simple user-defined functions (previous posts on the topic have usually proposed something similar):
df1 <- data.frame(x=runif(100), y=runif(100))
df2 <- data.frame(x=runif(100), y=runif(100))
km <- kmeans(df1, centers=3)
closest.cluster <- function(x) {
cluster.dist <- apply(km$centers, 1, function(y) sqrt(sum((x-y)^2)))
return(which.min(cluster.dist)[1])
}
clusters2 <- apply(df2, 1, closest.cluster)
However, I'm preparing this clustering example for a course in which students will be unfamiliar with the apply
function, so I would much prefer if I could assign the clusters to df2 with a built-in function. Are there any convenient built-in functions to find the closest cluster?