This seems like something that ought to be frequently asked and answered, but my search-fu has failed me.
I'm writing a function which I want to accept a generic callable object of some kind (including bare function, hand-rolled functor object, bind
, or std::function
) and then invoke it within the depths of an algorithm (ie. a lambda).
The function is currently declared like this:
template<typename T, typename F>
size_t do_something(const T& a, const F& f)
{
T internal_value(a);
// do some complicated things
// loop {
// loop {
f(static_cast<const T&>(internal_value), other_stuff);
// do some more things
// }
// }
return 42;
}
I'm accepting the functor by reference because I want to guarantee that it does not get copied on entry to the function, and thus the same instance of the object is actually called. And it's a const reference because this is the only way to accept temporary objects (which are common when using hand-rolled functors or bind
).
But this requires that the functor implement operator()
as const. I don't want to require that; I want it to be able to accept both.
I know I can declare two copies of this method, one that accepts it as const and one as non-const, in order to cover both cases. But I don't want to do that as the comments are hiding quite a lot of code that I don't want to duplicate (including some loop constructs, so I can't extract them to a secondary method without just moving the problem).
I also know I could probably cheat and const_cast
the functor to non-const before I invoke it, but this feels potentially dangerous (and in particular would invoke the wrong method if the functor intentionally implements both const and non-const call operators).
I've considered accepting the functor as a std::function
/boost::function
, but this feels like a heavy solution to what ought to be a simple problem. (Especially in the case where the functor is supposed to do nothing.)
Is there a "right" way to satisfy these requirements short of duplicating the algorithm?
[Note: I would prefer a solution that does not require C++11, although I am interested in C++11 answers too, as I'm using similar constructs in projects for both languages.]