I have implemented a MCMC algorithm in C++ using the Eigen library. The main part of the algorithm is a loop in which first some some matrix calculations are performed after which the determinant of the resulting matrix is obtained and added to the output. E.g.:
MatrixXd delta0;
NumericVector out(3);
out[0] = 0;
out[1] = 0;
for (int i = 0; i < s; i++) {
...
delta0 = V*(A.cast<double>()-(A+B).cast<double>()*theta.asDiagonal());
...
I = delta0.determinant()
out[1] += I;
out[2] += std::sqrt(I);
}
return out;
Now on certain matrices I unfortunately observe a numerical underflow so that the determinant is outputted as zero (which it actually isn't).
How can I avoid this underflow?
One solution would be to obtain, instead of the determinant, the log of the determinant. However,
- I do not know how to do this;
- how could I then add up these logs?
Any help is greatly appreciated.