I don't work with Scala but do work with F# parser combinators and also needed associativity with infix operators. While I am sure you can do 5-4 or 2+3, the problem comes in with a sequence of two or more such operators of the same precedence and operator, i.e. 5-4-2 or 2+3+5. The problem won't show up with addition as (2+3)+5 = 2+(3+5) but (5-4)-2 <> 5-(4-2) as you know.
See: Monadic Parser Combinators 4.3 Repetition with meaningful separators. Note: The separators are the operators such as "+" and "*" and not whitespace or commas.
See: Functional Parsers Look for the chainl and chainr parsers in section 7. More parser combinators.
For example, an arithmetical expressions, where the operators that
separate the subexpressions have to be part of the parse tree. For
this case we will develop the functions chainr and chainl. These
functions expect that the parser for the separators yields a function
(!);
The function f should operate on an element and a list of tuples, each
containing an operator and an element. For example, f(e0; [(1; e1);
(2; e2); (3; e3)]) should return ((eo 1 e1) 2 e2) 3 e3. You may
recognize a version of foldl in this (albeit an uncurried one), where
a tuple (; y) from the list and intermediate result x are combined
applying x y.
You need a fold function
in the semantic parser, i.e. the part that converts the tokens from the syntactic parser into the output of the parser. In your code I believe it is this part.
{case a~b => (a /: b)((acc,f) => f(acc))}
Sorry I can't do better as I don't use Scala.