This is a follow up on PyMC: Parameter estimation in a Markov system
I have a system which is defined by its position and velocity at each timestep. The behavior of the system is defined as:
vel = vel + damping * dt
pos = pos + vel * dt
So, here is my PyMC model. To estimate vel
, pos
and most importantly damping
.
# PRIORS
damping = pm.Normal("damping", mu=-4, tau=(1 / .5**2))
# we assume some system noise
tau_system_noise = (1 / 0.1**2)
# the state consist of (pos, vel); save in lists
# vel: we can't judge the initial velocity --> assume it's 0 with big std
vel_states = [pm.Normal("v0", mu=-4, tau=(1 / 2**2))]
# pos: the first pos is just the observation
pos_states = [pm.Normal("p0", mu=observations[0], tau=tau_system_noise)]
for i in range(1, len(observations)):
new_vel = pm.Normal("v" + str(i),
mu=vel_states[-1] + damping * dt,
tau=tau_system_noise)
vel_states.append(new_vel)
pos_states.append(
pm.Normal("s" + str(i),
mu=pos_states[-1] + new_vel * dt,
tau=tau_system_noise)
)
# we assume some observation noise
tau_observation_noise = (1 / 0.5**2)
obs = pm.Normal("obs", mu=pos_states, tau=tau_observation_noise, value=observations, observed=True)
This is how I run the sampling:
mcmc = pm.MCMC([damping, obs, vel_states, pos_states])
mcmc.sample(50000, 25000)
pm.Matplot.plot(mcmc.get_node("damping"))
damping_samples = mcmc.trace("damping")[:]
print "damping -- mean:%f; std:%f" % (mean(damping_samples), std(damping_samples))
print "real damping -- %f" % true_damping
The value for damping
is dominated by the prior. Even if I change the prior to Uniform or whatever, it is still the case.
What am I doing wrong? It's pretty much like the previous example, just with another layer.
The full IPython notebook of this problem is available here: http://nbviewer.ipython.org/github/sotte/random_stuff/blob/master/PyMC%20-%20HMM%20Dynamic%20System.ipynb
[EDIT: Some clarifications & code for sampling.]
[EDIT2: @Chris answer didn't help. I could not use AdaptiveMetropolis
since the *_states don't seem to be part of the model.]