Question:
3 while loops below contain code that has been commented out. I search for ("TAG1", "TAG2", and "TAG3") for easy identification. I simply want the while loops to wait on the condition tested to become true before proceeding while minimizing CPU resources as much as possible. I first tried using Boost condition variables, but there's a race condition. Putting the thread to sleep for 'x' microseconds is inefficient because there is no way to precisely time the wakeup. Finally, boost::this_thread::yield() does not seem to do anything. Probably because I only have 2 active threads on a dual-core system. Specifically, how can I make the three tagged areas below run more efficiently while introducing as little unnecessary blocking as possible.
BACKGROUND
Objective:
I have an application that logs a lot of data. After profiling, I found that much time is consumed on the logging operations (logging text or binary to a file on the local hard disk). My objective is to reduce the latency on logData calls by replacing non-threaded direct write calls with calls to a threaded buffered stream logger.
Options Explored:
- Upgrade 2005-era slow hard disk to SSD...possible. Cost is not prohibitive...but involves a lot of work... more than 200 computers would have to be upgraded...
- Boost ASIO...I don't need all the proactor / networking overhead, looking for something simpler and more light-weight.
Design:
- Producer and consumer thread pattern, the application writes data into a buffer and a background thread then writes it to disk sometime later. So the ultimate goal is to have the writeMessage function called by the application layer return as fast as possible while data is correctly / completely logged to the log file in a FIFO order sometime later.
- Only one application thread, only one writer thread.
- Based on ring buffer. The reason for this decision is to use as few locks as possible and ideally...and please correct me if I'm wrong...I don't think I need any.
- Buffer is a statically-allocated character array, but could move it to the heap if needed / desired for performance reasons.
- Buffer has a start pointer that points to the next character that should be written to the file. Buffer has an end pointer that points to the array index after the last character to be written to the file. The end pointer NEVER passes the start pointer. If a message comes in that is larger than the buffer, then the writer waits until the buffer is emptied and writes the new message to the file directly without putting the over-sized message in the buffer (once the buffer is emptied, the worker thread won't be writing anything so no contention).
- The writer (worker thread) only updates the ring buffer's start pointer.
- The main (application thread) only updates the ring buffer's end pointer, and again, it only inserts new data into the buffer when there is available space...otherwise it either waits for space in the buffer to become available or writes directly as described above.
- The worker thread continuously checks to see if there is data to be written (indicated by the case when the buffer start pointer != buffer end pointer). If there is no data to be written, the worker thread should ideally go to sleep and wake up once the application thread has inserted something into the buffer (and changed the buffer's end pointer such that it no longer points to the same index as the start pointer). What I have below involves while loops continuously checking that condition. It is a very bad / inefficient way of waiting on the buffer.
Results:
- On my 2009-era dual-core laptop with SSD, I see that the total write time of the threaded / buffered benchmark vs. direct write is about 1 : 6 (0.609 sec vs. 0.095 sec), but highly variable. Often the buffered write benchmark is actually slower than direct write. I believe that the variability is due to the poor implementation of waiting for space to free up in the buffer, waiting for the buffer to empty, and having the worker-thread wait for work to become available. I have measured that some of the while loops consume over 10000 cycles and I suspect that those cycles are actually competing for hardware resources that the other thread (worker or application) requires to finish the computation being waited on.
- Output seems to check out. With TEST mode enabled and a small buffer size of 10 as a stress test, I diffed hundreds of MBs of output and found it to equal the input.
Compiles with current version of Boost (1.55)
Header
#ifndef BufferedLogStream_h
#define BufferedLogStream_h
#include <stdio.h>
#include <iostream>
#include <iostream>
#include <cstdlib>
#include "boost\chrono\chrono.hpp"
#include "boost\thread\thread.hpp"
#include "boost\thread\locks.hpp"
#include "boost\thread\mutex.hpp"
#include "boost\thread\condition_variable.hpp"
#include <time.h>
using namespace std;
#define BENCHMARK_STR_SIZE 128
#define NUM_BENCHMARK_WRITES 524288
#define TEST 0
#define BENCHMARK 1
#define WORKER_LOOP_WAIT_MICROSEC 20
#define MAIN_LOOP_WAIT_MICROSEC 10
#if(TEST)
#define BUFFER_SIZE 10
#else
#define BUFFER_SIZE 33554432 //4 MB
#endif
class BufferedLogStream {
public:
BufferedLogStream();
void openFile(char* filename);
void flush();
void close();
inline void writeMessage(const char* message, unsigned int length);
void writeMessage(string message);
bool operator() () { return start != end; }
private:
void threadedWriter();
inline bool hasSomethingToWrite();
inline unsigned int getFreeSpaceInBuffer();
void appendStringToBuffer(const char* message, unsigned int length);
FILE* fp;
char* start;
char* end;
char* endofringbuffer;
char ringbuffer[BUFFER_SIZE];
bool workerthreadkeepalive;
boost::mutex mtx;
boost::condition_variable waitforempty;
boost::mutex workmtx;
boost::condition_variable waitforwork;
#if(TEST)
struct testbuffer {
int length;
char message[BUFFER_SIZE * 2];
};
public:
void test();
private:
void getNextRandomTest(testbuffer &tb);
FILE* datatowrite;
#endif
#if(BENCHMARK)
public:
void runBenchmark();
private:
void initBenchmarkString();
void runDirectWriteBaseline();
void runBufferedWriteBenchmark();
char benchmarkstr[BENCHMARK_STR_SIZE];
#endif
};
#if(TEST)
int main() {
BufferedLogStream* bl = new BufferedLogStream();
bl->openFile("replicated.txt");
bl->test();
bl->close();
cout << "Done" << endl;
cin.get();
return 0;
}
#endif
#if(BENCHMARK)
int main() {
BufferedLogStream* bl = new BufferedLogStream();
bl->runBenchmark();
cout << "Done" << endl;
cin.get();
return 0;
}
#endif //for benchmark
#endif
Implementation
#include "BufferedLogStream.h"
BufferedLogStream::BufferedLogStream() {
fp = NULL;
start = ringbuffer;
end = ringbuffer;
endofringbuffer = ringbuffer + BUFFER_SIZE;
workerthreadkeepalive = true;
}
void BufferedLogStream::openFile(char* filename) {
if(fp) close();
workerthreadkeepalive = true;
boost::thread t2(&BufferedLogStream::threadedWriter, this);
fp = fopen(filename, "w+b");
}
void BufferedLogStream::flush() {
fflush(fp);
}
void BufferedLogStream::close() {
workerthreadkeepalive = false;
if(!fp) return;
while(hasSomethingToWrite()) {
boost::unique_lock<boost::mutex> u(mtx);
waitforempty.wait_for(u, boost::chrono::microseconds(MAIN_LOOP_WAIT_MICROSEC));
}
flush();
fclose(fp);
fp = NULL;
}
void BufferedLogStream::threadedWriter() {
while(true) {
if(start != end) {
char* currentend = end;
if(start < currentend) {
fwrite(start, 1, currentend - start, fp);
}
else if(start > currentend) {
if(start != endofringbuffer) fwrite(start, 1, endofringbuffer - start, fp);
fwrite(ringbuffer, 1, currentend - ringbuffer, fp);
}
start = currentend;
waitforempty.notify_one();
}
else { //start == end...no work to do
if(!workerthreadkeepalive) return;
boost::unique_lock<boost::mutex> u(workmtx);
waitforwork.wait_for(u, boost::chrono::microseconds(WORKER_LOOP_WAIT_MICROSEC));
}
}
}
bool BufferedLogStream::hasSomethingToWrite() {
return start != end;
}
void BufferedLogStream::writeMessage(string message) {
writeMessage(message.c_str(), message.length());
}
unsigned int BufferedLogStream::getFreeSpaceInBuffer() {
if(end > start) return (start - ringbuffer) + (endofringbuffer - end) - 1;
if(end == start) return BUFFER_SIZE-1;
return start - end - 1; //case where start > end
}
void BufferedLogStream::appendStringToBuffer(const char* message, unsigned int length) {
if(end + length <= endofringbuffer) { //most common case for appropriately-sized buffer
memcpy(end, message, length);
end += length;
}
else {
int lengthtoendofbuffer = endofringbuffer - end;
if(lengthtoendofbuffer > 0) memcpy(end, message, lengthtoendofbuffer);
int remainderlength = length - lengthtoendofbuffer;
memcpy(ringbuffer, message + lengthtoendofbuffer, remainderlength);
end = ringbuffer + remainderlength;
}
}
void BufferedLogStream::writeMessage(const char* message, unsigned int length) {
if(length > BUFFER_SIZE - 1) { //if string is too large for buffer, wait for buffer to empty and bypass buffer, write directly to file
while(hasSomethingToWrite()); {
boost::unique_lock<boost::mutex> u(mtx);
waitforempty.wait_for(u, boost::chrono::microseconds(MAIN_LOOP_WAIT_MICROSEC));
}
fwrite(message, 1, length, fp);
}
else {
//wait until there is enough free space to insert new string
while(getFreeSpaceInBuffer() < length) {
boost::unique_lock<boost::mutex> u(mtx);
waitforempty.wait_for(u, boost::chrono::microseconds(MAIN_LOOP_WAIT_MICROSEC));
}
appendStringToBuffer(message, length);
}
waitforwork.notify_one();
}
#if(TEST)
void BufferedLogStream::getNextRandomTest(testbuffer &tb) {
tb.length = 1 + (rand() % (int)(BUFFER_SIZE * 1.05));
for(int i = 0; i < tb.length; i++) {
tb.message[i] = rand() % 26 + 65;
}
tb.message[tb.length] = '\n';
tb.length++;
tb.message[tb.length] = '\0';
}
void BufferedLogStream::test() {
cout << "Buffer size is: " << BUFFER_SIZE << endl;
testbuffer tb;
datatowrite = fopen("orig.txt", "w+b");
for(unsigned int i = 0; i < 7000000; i++) {
if(i % 1000000 == 0) cout << i << endl;
getNextRandomTest(tb);
writeMessage(tb.message, tb.length);
fwrite(tb.message, 1, tb.length, datatowrite);
}
fflush(datatowrite);
fclose(datatowrite);
}
#endif
#if(BENCHMARK)
void BufferedLogStream::initBenchmarkString() {
for(unsigned int i = 0; i < BENCHMARK_STR_SIZE - 1; i++) {
benchmarkstr[i] = rand() % 26 + 65;
}
benchmarkstr[BENCHMARK_STR_SIZE - 1] = '\n';
}
void BufferedLogStream::runDirectWriteBaseline() {
clock_t starttime = clock();
fp = fopen("BenchMarkBaseline.txt", "w+b");
for(unsigned int i = 0; i < NUM_BENCHMARK_WRITES; i++) {
fwrite(benchmarkstr, 1, BENCHMARK_STR_SIZE, fp);
}
fflush(fp);
fclose(fp);
clock_t elapsedtime = clock() - starttime;
cout << "Direct write baseline took " << ((double) elapsedtime) / CLOCKS_PER_SEC << " seconds." << endl;
}
void BufferedLogStream::runBufferedWriteBenchmark() {
clock_t starttime = clock();
openFile("BufferedBenchmark.txt");
cout << "Opend file" << endl;
for(unsigned int i = 0; i < NUM_BENCHMARK_WRITES; i++) {
writeMessage(benchmarkstr, BENCHMARK_STR_SIZE);
}
cout << "Wrote" << endl;
close();
cout << "Close" << endl;
clock_t elapsedtime = clock() - starttime;
cout << "Buffered write took " << ((double) elapsedtime) / CLOCKS_PER_SEC << " seconds." << endl;
}
void BufferedLogStream::runBenchmark() {
cout << "Buffer size is: " << BUFFER_SIZE << endl;
initBenchmarkString();
runDirectWriteBaseline();
runBufferedWriteBenchmark();
}
#endif
Update: November 25, 2013
I updated the code below use boost::condition_variables, specifically the wait_for() method as recommended by Evgeny Panasyuk. This avoids unnecessarily checking the same condition over and over again. I am currently seeing the buffered version run in about 1/6th the time as the unbuffered / direct-write version. This is not the ideal case because both cases are limited by the hard disk (in my case a 2010 era SSD). I plan to use the code below in an environment where the hard disk will not be the bottleneck and most if not all the time, the buffer should have space available to accommodate the writeMessage requests. That brings me to my next question. How big should I make the buffer? I don't mind allocating 32 MBs or 64 MB to ensure that it never fills up. The code will be running on systems that can spare that. Intuitively, I feel that it's a bad idea to statically allocate a 32 MB character array. Is it? Anyhow, I expect that when I run the code below for my intended application, the latency of logData() calls will be greatly reduced which will yield a significant reduction in overall processing time.
If anyone sees any way to make the code below better (faster, more robust, leaner, etc), please let me know. I appreciate the feedback. Lazin, how would your approach be faster or more efficient than what I have posted below? I kinda like the idea of just having one buffer and making it large enough so that it practically never fills up. Then I don't have to worry about reading from different buffers. Evgeny Panasyuk, I like the approach of using existing code whenever possible, especially if it's an existing boost library. However, I also don't see how the spcs_queue is more efficient than what I have below. I'd rather deal with one large buffer than many smaller ones and have to worry about splitting splitting my input stream on the input and splicing it back together on the output. Your approach would allow me to offload the formatting from the main thread onto the worker thread. That is a cleaver approach. But I'm not sure yet whether it will save a lot of time and to realize the full benefit, I would have to modify code that I do not own.
//End Update