TypeTag Approach
The Java runtime requires generic type param erasure. Scala compiler combats this by 'injecting' type info into methods declared with TypeTag
type arg:
def typeAwareMethod[T: TypeTag] (someArg: T) {
... // logic referring to T, the type of varToCheck
}
(alternatively, can use an equivalent, more long-winded implicit param - not shown)
When scala compiles an invocation of a method having (1) type arg [T: TypeTag]
and (2) normal arg someArg: T
, it collects type param metadata for someArg
from the calling context and augments the type arg T
with this metadata. T's value plus tag data are externaly type-inferred from calls:
val slimesters = List[Reptile](new Frog(...), new CreatureFromBlackLagoon(...))
typeAwareMethod(slimesters)
Logic Referring to T (within above method) - runtime reflection
import scala.reflection.runtime.universe._
: contents of the universe object of type scala.relection.api.JavaUniverse
. NB: subject to evolutionary API change
Direct TypeTag
comparison:
The tag info can be obtained via method typeTag[T]
, then directly tested/pattern matched for (exact) equality with other type tags:
val tag: TypeTag[T] = typeTag[T]
if (typeTag[T] == typeTag[List[Reptile]]) ...
typeTag[T] match {
case typeTag[List[Reptile]] => ...
}
Limitations: not subtype aware (above won't match List[Frog]
); no additional metadata obtainable through TypeTag
.
Smarter Type-comparison operations:
Convert to Type
via typeOf[T]
(or typeTag[T].tpe
). Then use the gammut of Type
ops, including pattern-matching. NB: in reflection typespace, =:=
means type equivalance (analogue of :
), <:<
means type conformance (analogue of <:
)
val tType: Type = typeOf[T] // or equivalently, typeTag[T].tpe
if (typeOf[T] <:< typeOf[List[Reptile]]) ... // matches List[Frog]
typeOf[T] match {
case t if t <:< typeOf[List[Reptile]] => ...
}
// Running Example:
def testTypeMatch[T: TypeTag](t: T) = if (typeOf[T] <:< typeOf[Seq[Int]]) "yep!!!"
test(List[Int](1, 2, 3)) // prints yep!!!
Method still needs type param [T: TypeTag] or you'll get the type-erasure view of the world...
Introspect on Type metadata
I lied in 2 ;). For your case, typeOf[T]
actually returns TypeRef
(a subtype of Type
), since you're instantiating a type declared elsewhere. To get at the full metadata, you need to convert Type
to TypeRef
.
typeTag[T].tpe match {
case t: TypeRef => ... // call t.args to access typeArgs (as List[Type])
case _ => throw IllegalArgumentException("Not a TypeRef")
}
instead of t: TypeRef
, can extract parts via pattern match on:
case TypeRef(prefixType, typeSymbol, typeArgsListOfType) =>
Type
has method:
def typeSymbol: Symbol
Symbol has methods:
def fullName: String
def name: Name
Name has methods:
def decoded: String // the scala name
def encoded: String // the java name
Solution For Your Case
Solution based on (3):
import scala.reflect.runtime.universe._
def typeArgsOf[T: TypeTag](a: T): List[Type] = typeOf[T] match {
case TypeRef(_, _, args) => args
case _ => Nil
}
val a = Seq[Int](1,2,3,4,5,6,7,8,9,0)
val b = Seq[String]("a","b","c")
// mkString & pring for debugging - parsing logic should use args, not strings!
print("[" + (typeArgsOf(a) mkString ",") + "]")
print("[" + (typeArgsOf(b) mkString ",") + "]")
Aside: there's an issue with this test case:
val x = List(Seq[Int](1,2,3,4,5,6,7,8,9,0),Seq[String]("a","b","c"))
Type of x is List[Seq[Any]]. Any is the lowest common ancestor of String and Int. In this case there's nothing to introspect, since all types descend from Any , and there's no further type information available. To get stronger typing, separate the two Seqs, either via separate variables or a tuple/pair - but once separated, no higher order common mapping / folding across the two. "Real world" cases shouldn't have this problem.