I am new to Machine learning and I have this basic question. As I am weak in Math part of the algorithm I find it difficult to understand this.
When you are given a task to design a classifier(keep it simple -- a 2 class classifier) using unsupervised learning(no training samples), how to decide what type of classifier(linear or non-linear) to use? If we do not know this, then the importance on feature selection(which means indirectly knowing what the data set is) becomes very critical. Am I thinking in the right direction or is there something big that I dont know. Insight into this topic is greatly appreciated.