I had a need for a Blocking Queue in C++ with timeout-capable offer()
. The queue is intended for multiple producers, one consumer. Back when I was implementing, I didn't find any good existing queues that fit this need, so I coded it myself.
I'm seeing segfaults come out of the take()
method on the queue, but they are intermittent. I've been looking over the code for issues but I'm not seeing anything that looks problematic.
I'm wondering if:
- There is an existing library that does this reliably that I should use (boost or header-only preferred).
- Anyone sees any obvious flaw in my code that I need to fix.
Here is the header:
class BlockingQueue
{
public:
BlockingQueue(unsigned int capacity) : capacity(capacity) { };
bool offer(const MyType & myType, unsigned int timeoutMillis);
MyType take();
void put(const MyType & myType);
unsigned int getCapacity();
unsigned int getCount();
private:
std::deque<MyType> queue;
unsigned int capacity;
};
And the relevant implementations:
boost::condition_variable cond;
boost::mutex mut;
bool BlockingQueue::offer(const MyType & myType, unsigned int timeoutMillis)
{
Timer timer;
// boost::unique_lock is a scoped lock - its destructor will call unlock().
// So no need for us to make that call here.
boost::unique_lock<boost::mutex> lock(mut);
// We use a while loop here because the monitor may have woken up because
// another producer did a PulseAll. In that case, the queue may not have
// room, so we need to re-check and re-wait if that is the case.
// We use an external stopwatch to stop the madness if we have taken too long.
while (queue.size() >= this->capacity)
{
int monitorTimeout = timeoutMillis - ((unsigned int) timer.getElapsedMilliSeconds());
if (monitorTimeout <= 0)
{
return false;
}
if (!cond.timed_wait(lock, boost::posix_time::milliseconds(timeoutMillis)))
{
return false;
}
}
cond.notify_all();
queue.push_back(myType);
return true;
}
void BlockingQueue::put(const MyType & myType)
{
// boost::unique_lock is a scoped lock - its destructor will call unlock().
// So no need for us to make that call here.
boost::unique_lock<boost::mutex> lock(mut);
// We use a while loop here because the monitor may have woken up because
// another producer did a PulseAll. In that case, the queue may not have
// room, so we need to re-check and re-wait if that is the case.
// We use an external stopwatch to stop the madness if we have taken too long.
while (queue.size() >= this->capacity)
{
cond.wait(lock);
}
cond.notify_all();
queue.push_back(myType);
}
MyType BlockingQueue::take()
{
// boost::unique_lock is a scoped lock - its destructor will call unlock().
// So no need for us to make that call here.
boost::unique_lock<boost::mutex> lock(mut);
while (queue.size() == 0)
{
cond.wait(lock);
}
cond.notify_one();
MyType myType = this->queue.front();
this->queue.pop_front();
return myType;
}
unsigned int BlockingQueue::getCapacity()
{
return this->capacity;
}
unsigned int BlockingQueue::getCount()
{
return this->queue.size();
}
And yes, I didn't implement the class using templates - that is next on the list :)
Any help is greatly appreciated. Threading issues can be really hard to pin down.
-Ben