For counting blue pixel in a RGB image you can simply do the following
- Inrange the source image to filter out blue component to a binary image.
- Count non zero pixel in the binary image using the function countNonZero.
You can refer below C++ code for how to do it
#include <stdio.h>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat src,dst;
src = imread("rgb1.jpg",1);
inRange(src, Scalar(200,0,0), Scalar(255,50,50), dst); //In range with approximate blue range
cout<<"No of blue pixels---->"<<countNonZero(dst)<<endl;
imshow("src",src);
imshow("out",out);
waitKey(0);
return 0;
}
Edit:-
Here is the working python code
import cv2
import numpy as np
img = cv2.imread("bgr.png")
BLUE_MIN = np.array([0, 0, 200], np.uint8)
BLUE_MAX = np.array([50, 50, 255], np.uint8)
dst = cv2.inRange(img, BLUE_MIN, BLUE_MAX)
no_blue = cv2.countNonZero(dst)
print('The number of blue pixels is: ' + str(no_blue))
cv2.namedWindow("opencv")
cv2.imshow("opencv",img)
cv2.waitKey(0)
Hope this is what you looking for.....
Edit2:-
As @ kigurai commented below OpenCV consider image in BGR order and I gave wrong order for BLUE_MIN and BLUE_MAX array.
So in the above code the lines
BLUE_MIN = np.array([0, 0, 200], np.uint8)
BLUE_MAX = np.array([50, 50, 255], np.uint8)
should changed to
BLUE_MIN = np.array([200, 0, 0], np.uint8) // minimum value of blue pixel in BGR order
BLUE_MAX = np.array([255, 50, 50], np.uint8)// maximum value of blue pixel in BGR order