Consider the following algorithm for linear programming, minimizing [c,x] with A.x <= b.
(1) Start with a feasible point x_0
(2) Given a feasible point x_k, find the greatest alpha such that x_k - alpha.c is admissible (straighforward, look at the ratios of the components of A.x0 to A.c)
(3) take the normal unit vector n to the hyperplane we just reached, pointing inwards. Project n on the plane [c,.] giving r = n - [n,c]/[c,c].c, then look for the greatest beta for which x_k - alpha.c + beta.r is admissible. Set x_{k+1} = x_k - alpha.c + 1/2*beta.r
If x_{k+1} is close enough to x_k within tolerance, return it, otherwise go to (2)
The basic idea is to follow the gradient until one hits a wall. Then, rather than following the shell of the simplex, like the simplex algorithm would do, the solution is kicked back inside the simplex, on a plane where the solutions are no worse, in the direction of the normal vector. The solution moves halfway between the starting point and the next constraint in this direction. It's no worse than before, but now it's more "inside" the simplex, where is has a shot at taking long leaps towards the optimum.
Though the probability of hitting an intersection of more than one hyperplane is 0, if one gets close enough to multiple hyperplane within a certain tolerance, the average of the normals may be taken.
This can be generalized to any convex objective function by following geodesics on the levels of the function. For quadratic programming in particular, one rotates the solution towards the inside of the simplex.
Questions:
Does this algorithm have a name or fall within a category of linear-programming algorithms?
Does it have an obvious flaw that I'm overlooking?