What is fastest way to calculate the first n satisfying the equation
a^n mod m = 1
Here a,n,m can be prime or composite mod : is the modulus operator
What is fastest way to calculate the first n satisfying the equation
a^n mod m = 1
Here a,n,m can be prime or composite mod : is the modulus operator
What is wrong with the direct way:
int mod_order(int m, int a) {
for(int n = 1, an = a; n != m; n++, an = an * a % m) if(an % m == 1) return n;
return -1;
}
As you can see, computing ф(m) is essentially the same as factorization of m. This can be done in sqrt(m) time or faster, depending on how convoluted is the algorithm you use. Simple one:
int phi(m){
if(m==1) return 1;
for(int d=2; d*d<m; ++d){
if(m%d != 0) continue;
int deg = 1; long acc=1;
for(; m%(acc*d)==0; ++deg) acc*=d;
acc /= d;
return phi(m/acc)*acc*(d-1)/d;
}
return m-1;
}
Upd: My bad. a^(ф(m)) = 1 (mod m), but there can be lesser value of n (for a=1, n=1, no difference what m is; for a=14, m=15, n=2). n is divisor of ф(m), but efficiently computing least possible n seems to be tricky. Task can be divided, by using this theorem (minimal n is least common multiple for all degrees for respective remainders). But when m is prime or has big enough prime divisor, and there is only one a (as opposed to computing n for many different a with the same m), we're kind of out of options. You may want to look at 1, 2.